• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (7): 295-306.doi: 10.3901/JME.2023.07.295

• 低碳工厂与制造能效 • 上一篇    下一篇

扫码分享

基于SOM-Kmeans的机床能效等级评价方法

崔佳斌1, 李聪波1, 曹华军1, 陈行政2, 王军见3, 戴涛4   

  1. 1. 重庆大学机械传动国家重点实验室 重庆 400044;
    2. 西南大学工程技术学院 重庆 400715;
    3. 国家机床质量监督检验中心 北京 101312;
    4. 重庆第二机床厂有限责任公司 重庆 400072
  • 收稿日期:2022-04-11 修回日期:2022-07-29 出版日期:2023-04-05 发布日期:2023-06-16
  • 通讯作者: 李聪波(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为绿色制造与制造系统能效。E-mail:congboli@cqu.edu.cn
  • 作者简介:崔佳斌,男,1996年出生,硕士研究生。主要研究方向为绿色制造。E-mail:cuijiabin@cqu.edu.cn
  • 基金资助:
    国家自然科学基金(51975075、51905448)和重庆市技术创新与应用发展专项(cstc2020jscx-msxmX0221)

SOM-Kmeans Based Machine Tools Energy Efficiency Grade Evaluation

CUI Jiabin1, LI Congbo1, CAO Huajun1, CHEN Xingzheng2, WANG Junjian3, DAI Tao4   

  1. 1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044;
    2. College of Engineering and Technology, Southwest University, Chongqing 400715;
    3. China National Machine Tool Quality Supervision and Testing, Beijing 101312;
    4. Chongqing No.2 Machine Tool Works Co., Ltd., Chongqing 400072
  • Received:2022-04-11 Revised:2022-07-29 Online:2023-04-05 Published:2023-06-16

摘要: 机床能效等级评价是提高能源效率的基础。现有机床能效评价方法多运用能量利用率和比能等指标评价特定加工过程能效,未考虑加工能力对机床能效评价的影响,致使无法综合评价机床能效等级。为此,从机床加工能力和能耗特性角度构建机床能效等级评价指标,提出基于自组织映射神经网络-K均值(SOM-Kmeans)的机床能效等级评价方法。首先,分析机床加工能力特性和时段能耗特性,构建机床加工能力指标和多时段能耗特性指标;其次,运用SOM-Kmeans对机床能效信息进行聚类分析,并采用主成分分析法(PCA)对机床能效等级进行综合评价;最后,通过实际案例验证了所提方法的有效性和实用性。

关键词: 机床能效等级, 加工能力, 能耗特性, 聚类分析

Abstract: The evaluation of machine tool energy efficiency grade is the basis for improving energy efficiency. Most of the existing evaluation methods mostly use energy utilization and specific energy to evaluate the energy efficiency of specific machining processes, without considering the influence of machining capacity on machine tool energy efficiency evaluation. To comprehensively evaluate machine tools energy efficiency grade, the machine tools energy efficiency grade evaluation method based on Self-organizing Map and Kmeans (SOM-Kmeans) is proposed in terms of machining capacity and energy consumption characteristics. Firstly, the energy consumption and machining capacity characteristics are analyzed, and then the multi-period energy consumption characteristics and machining capacity index are constructed. Secondly, the cluster analysis of machine tool energy efficiency information is carried out using SOM-Kmeans and the machine tool energy efficiency grade is obtained based on principal component analysis (PCA). Finally, the effectiveness and practicability of the proposed method are verified by actual cases.

Key words: machine tool energy efficiency grade, machining capacity, energy consumption characteristics, cluster analysis

中图分类号: