机械工程学报 ›› 2023, Vol. 59 ›› Issue (7): 110-138.doi: 10.3901/JME.2023.07.110
所属专题: 《机械工程学报》近期佳作集锦 | “双碳”绿色制造技术
许文昊1, 李长河1, 张彦彬1, 杨敏1, 周宗明2, 陈云3, 刘波4, 张乃庆5, 许雪峰6
收稿日期:
2022-06-20
修回日期:
2022-07-19
出版日期:
2023-04-05
发布日期:
2023-06-16
通讯作者:
李长河(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为智能与洁净精密制造。E-mail:sy_lichanghe@163.com
作者简介:
许文昊,男,1999年出生。主要研究方向为洁净精密制造。E-mail:tzxuwenhao@163.com
基金资助:
XU Wenhao1, LI Changhe1, ZHANG Yanbin1, YANG Min1, ZHOU Zongming2, CHEN Yun3, LIU Bo4, ZHANG Naiqing5, XU Xuefeng6
Received:
2022-06-20
Revised:
2022-07-19
Online:
2023-04-05
Published:
2023-06-16
摘要: 微量润滑作为替代浇注式供液冷却的可行性方案之一,得到了数十年的发展。然而,气动雾化微量润滑雾滴的表面能逐渐降低;射流的穿透力、吸附力和浸润性能不足,雾滴的漂移和飞溅丧失严重,加大了对环境的污染。静电雾化微量润滑是解决工业生产应用面临技术瓶颈和环保压力的有效方式。首先,系统综述了静电雾化微量润滑关键装置、赋能原理与绿色雾化介质(纳米生物润滑剂)。其次,揭示了微液滴的雾化性能对切削区浸润性能的影响机制,并从荷电液滴静力学的角度阐述了静电雾化微量润滑优异的雾化性能,通过表征雾化介质的荷电性能分析了不同参数对雾化能力的影响机制。进一步地,基于纳米生物润滑剂的脂肪酸分子结构、黏度等理化性质,以及荷电液滴表面状态、空间多能场等,揭示了静电雾化微量润滑改善液滴浸润、渗透以及成膜性能的作用机制,并综述了其在车削、铣削、磨削等工况下对降低刀具磨损、提高加工表面质量的优异性能。在此基础上分析得到:静电雾化优异的雾化特性以及纳米生物润滑剂独特的润滑传热机制,不仅降低了加工环境油雾浓度,还提升了微量润滑的加工性能,具体表现在,与传统微量润滑相比PM2.5/PM10降低约6.2%~68.3%,刀具寿命增加约48.1%~100%,Ra降低约12.6%~39.3%。最后,展望了未来的发展趋势,以此希望为制造业双碳转型提供技术支撑和理论参考。
中图分类号:
许文昊, 李长河, 张彦彬, 杨敏, 周宗明, 陈云, 刘波, 张乃庆, 许雪峰. 静电雾化微量润滑研究进展与应用[J]. 机械工程学报, 2023, 59(7): 110-138.
XU Wenhao, LI Changhe, ZHANG Yanbin, YANG Min, ZHOU Zongming, CHEN Yun, LIU Bo, ZHANG Naiqing, XU Xuefeng. Research Progress and Application of Electrostatic Atomization Minimum Quantity Lubrication[J]. Journal of Mechanical Engineering, 2023, 59(7): 110-138.
[1] WU X F,LI C H,ZHOU Z M,et al. Circulating purification of cutting fluid:an overview[J]. International Journal of Advanced Manufacturing Technology,2021,117(9-10):2565-2600. [2] 刘明政,李长河,曹华军,等. 低温微量润滑加工技术研究进展与应用[J]. 中国机械工程,2022,33(5):529-550.LIU Mingzheng,LI Changhe,CAO Huajun,et al. Research progress and application of cryogenic minimum quantity lubrication machining technology[J]. China Mechanical Engineering,2022,33(05):529-550. [3] HAMRAN N N N,GHANI J A,RAMLI R,et al. A review on recent development of minimum quantity lubrication for sustainable machining[J]. Journal of Cleaner Production,2020,26818. [4] LUO ZW,DUBEY R,GUNASEKARAN A,et al. Sustainable production framework for cement manufacturing firms:A behavioural perspective[J]. Renewable & Sustainable Energy Reviews,2017,78495-502. [5] JABBOUR A,JABBOUR C J C,GODINHO M,et al. Industry 4.0 and the circular economy:A proposed research agenda and original roadmap for sustainable operations[J]. Annals of Operations Research,2018,270(1-2):273-286. [6] YIP W S,ZHOU H T,TO S. Discover the trend and evolution of sustainable manufacturing:A thematic and bibliometric analysis[J]. Environmental Science and Pollution Research,2022,29(26):38899-38911. [7] ZHANG S,LI J F,WANG Y W. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions[J]. Journal of Cleaner Production,2012,3281-87. [8] SINGH G,GUPTA M K,HEGAB H,et al. Progress for sustainability in the mist assisted cooling techniques:a critical review[J]. International Journal of Advanced Manufacturing Technology,2020,109(1-2):345-376. [9] SARIKAYA M,GUPTA M K,TOMAZ I,et al. Cooling techniques to improve the machinability and sustainability of light-weight alloys:A state-of-the-art review[J]. Journal of Manufacturing Processes,2021,62179-201. [10] PERVAIZ S,ANWAR S,QURESHI I,et al. Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2019,6(1):133-145. [11] OSMAN K A,UNVER H O,SEKER U. Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability:A review[J]. International Journal of Advanced Manufacturing Technology,2019,100(9-12):2311-2332. [12] GUPTA M K,KHAN A M,SONG Q H,et al. A review on conventional and advanced minimum quantity lubrication approaches on performance measures of grinding process[J]. International Journal of Advanced Manufacturing Technology,2021,117(3-4):729-750. [13] DEBNATH S,REDDY M M,YI Q S. Environmental friendly cutting fluids and cooling techniques in machining:A review[J]. Journal of Cleaner Production,2014,8333-47. [14] CUI X,LI C H,DING W F,et al. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application[J]. Chinese Journal of Aeronautics,2021. [15] 丁文锋,李敏,李本凯,等. 难加工金属材料磨削加工表面完整性研究进展[J]. 航空材料学报,2021,41(4):36-56.DING Wenfeng,LI Min,LI Benkai,et al. Research Progress on grinding surface integrity of difficult to machine metal materials[J]. Journal of Aeronautical Materials,2021,41(4):36-56. [16] ZHANG Y B,LI H N,LI C H,et al. Nano-enhanced biolubricant in sustainable manufacturing:From processability to mechanisms[J]. Friction,2022,10(6):803-841. [17] SIDIK NAC,SAMION S,GHADERIAN J,et al. Recent progress on the application of nanofluids in minimum quantity lubrication machining:A review[J]. International Journal of Heat and Mass Transfer,2017,10879-89. [18] BOSWELL B,ISLAM M N,DAVIES I J,et al. A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining[J]. International Journal of Advanced Manufacturing Technology,2017,92(1-4):321-340. [19] 刘晓丽,李亮,赵威,等. 基于微量润滑的切削油雾雾化特性测试与分析[J]. 工具技术,2011,45(12):16-18.LIU Xiaoli,LI Liang,ZHAO Wei,et al. The detection and analysis of atomization characteristics of cutting oil mist based on minimal quantity lubrication[J]. Tool Engineering,2011,45(12):16-18. [20] 贾东洲,李长河,王胜,等. 微量润滑磨削悬浮微粒分布特性研究[J]. 制造技术与机床,2014(2):58-61. JIA Dongzhou,LI Changhe,WANG Sheng,et al. Investigation into distributing characteristic of suspend particulate in MQL grinding[J]. Manufacturing Technology & Machine Tool,2014(2):58-61. [21] 赵威,何宁,李亮,等. 微量润滑系统参数对切削环境空气质量的影响[J]. 机械工程学报,2014,50(13):184-189. ZHAO Wei,HE Ning,LI Liang,et al. Investigation on the influence of system parameters on ambient air quality in minimum quantity lubrication milling process[J]. Journal of Mechanical Engineering,2014,50(13):2184-189. [22] HADAD M. An experimental investigation of the effects of machining parameters on environmentally friendly grinding process[J]. Journal of Cleaner Production,2015,108:217-231. [23] KELDER E M,MARIJNISSEN J C M,KARUGA S W. EDHA for energy production,storage and conversion devices[J]. Journal of Aerosol Science,2018,125:119-147. [24] ZHAO C,CHEN G P,WANG H,et al. Bio-inspired intestinal scavenger from microfluidic electrospray for detoxifying lipopolysaccharide[J]. Bioactive Materials,2021,6(6):1653-1662. [25] GAN Y,TONG Y,JU Y,et al. Experimental study on electro-spraying and combustion characteristics in meso-scale combustors[J]. Energy Conversion & Management,2017. [26] SHARMA V S,SINGH G,SORBY K. A review on minimum quantity lubrication for machining processes[J]. Materials and Manufacturing Processes,2015,30(8):935-953. [27] SHARMA A K,TIWARI A K,DIXIT A R. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids:A comprehensive review[J]. Journal of Cleaner Production,2016,127:1-18. [28] WICKRAMASINGHE K C,SASAHARA H,ABD RAHIM E,et al. Green metalworking fluids for sustainable machining applications:A review[J]. Journal of Cleaner Production,2020,25716. [29] WANG X M,LI C H,ZHANG Y B,et al. Vegetable oil-based nanofluid minimum quantity lubrication turning:Academic review and perspectives[J]. Journal of Manufacturing Processes,2020,59:76-97. [30] SEN B,MIA M,KROLCZYK G M,et al. Eco-friendly cutting fluids in minimum quantity lubrication assisted machining:A review on the perception of sustainable manufacturing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2021,8(1):249-280. [31] SAID Z,GUPTA M,HEGAB H,et al. A comprehensive review on minimum quantity lubrication (MQL) in machining processes using nano-cutting fluids[J]. International Journal of Advanced Manufacturing Technology,2019,105(5-6):2057-2086. [32] LIU M Z,LI C H,ZHANG Y B,et al. Cryogenic minimum quantity lubrication machining:From mechanism to application[J]. Frontiers of Mechanical Engineering,2021,16(4):649-697. [33] SHARMA V S,DOGRA M,SURI N M. Cooling techniques for improved productivity in turning[J]. International Journal of Machine Tools & Manufacture,2009,49(6):435-453. [34] KROLCZYK G M,MARUDA R W,KROLCZYK J B,et al. Ecological trends in machining as a key factor in sustainable production-A review[J]. Journal of Cleaner Production,2019,218601-615. [35] CHETAN,GHOSH S,RAO P V. Application of sustainable techniques in metal cutting for enhanced machinability:a review[J]. Journal of Cleaner Production,2015,100:17-34. [36] 袁松梅,韩文亮,朱光远,等. 绿色切削微量润滑增效技术研究进展[J]. 机械工程学报,2019,55(05):175-185. YUAN Songmei,HAN Weliang,ZHU Guangyuan,et al. Recent progress on the efficiency increasing methods of minimum quantity lubrication technology in green cutting[J]. Journal of Mechanical Engineering,2019,55(05):175-185. [37] 杨简彰,王成勇,袁尧辉,等. 微量润滑复合增效技术及其应用研究进展[J]. 中国机械工程,2022,33(05):506-528. YANG Jianzhang,WANG Chengyong,YUAN Yaohui,et al. State-of-the art on MQL synergistic technologies and their applications[J]. China Mechanical Engineering,2022,33(05):506-528. [38] REDDY N S K,YANG M. Development of an electro static lubrication system for drilling of SCM 440 steel[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2010,224(B2):217-224. [39] 姜海,苏宇. 同轴静电雾化切削雾化特性与加工性能研究[J]. 组合机床与自动化加工技术,2021(6):146-149. JIANG Hai,SU Yu. Study on atomization characteristics and machining performance of coaxial electrostatic atomization cutting[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(6):146-149. [40] 汤正成,苏宇. 同轴静电雾化切削雾化研究[J]. 工具技术,2018,52(5):77-81. TANG Zhengcheng,SU Yu. Investigation on co-axial electrostatic atomization cutting[J]. Tool Engineering,2018,52(5):77-81. [41] 高建,李立杰,袁宇杰,等. 一种用于微量润滑切削的静电雾化喷嘴及其使用方法:中国,112439570A[P]. 2020-11-10. GAO Jian,LI Lijie,YUAN Yujie,et al. The invention relates to an electrostatic atomizing nozzle for micro lubricating cutting and an application method thereof:China,112439570A[P]. 2020-11-10. [42] 许雪峰,赵阳阳,胡晓冬,等. 静电微量润滑的气液电汇流与输送装置:中国,209936485U[P]. 2019-04-11. XU Xuefeng,ZHANG Yangyang,HU Xiaodong,et al. Gas-liquid-electricity confluence and conveying device for electrostatic minimum quantity lubrication:China,209936485U[P]. 2019-04-11. [43] 李本凯,李长河,张彦彬,等. 电卡内冷却砂轮与静电技术耦合的纳米流体微量润滑磨削设备:中国,205520960U[P]. 2016-01-25. LI Benkai,LI Changhe,ZHANG Yanbin,et al. Electrical card internal cooling emery wheel and micro-lubricated grinding equipment of nano -fluids of technological coupling of static:China,205520960U[P]. 2016-01-25. [44] LI Changhe,JIA Dongzhou,ZHANG Dongkun,et al. Conveying capacity controllable nano particle jet flow minimal quantity lubrication grinding device in enhanced magnetoelectricity field:Australia,2013401144B2[P]. 2013-12-19. [45] 杨敏,马浩,李长河,等. 一种多能场驱动静电雾化微量润滑剂输运装置:中国,114012498A[P]. 2021-11-24. YANG Min,MA Hao,LI Changhe,et al. Multi-energy-field driven electrostatic atomization trace lubricant conveying device:China,114012498A[P]. 2021-11-24. [46] 张彦彬,李长河,贾东洲,等. 纳米流体微量润滑静电雾化可控射流内冷工艺用系统:中国,204135897U[P]. 2014-09-03.ZHANG Yanbin,LI Changhe,JIA Dongzhou,et al. System for nanofluid minimum quantity lubrication electrostatic atomization controllable jet internal cooling process:China,204135897U[P]. 2014-09-03. [47] JIA D Z,LI C H,WANG S,et al. Advances and patents about grinding equipments with nano-particle jet minimum quantity lubrication[J]. Recent Patents on Nanotechnology,2014,8(3):215-229. [48] ROSELL-LLOMPART J,GRIFOLL J,LOSCERTALES IG. Electrosprays in the cone-jet mode:From Taylor cone formation to spray development[J]. Journal of Aerosol Science,2018,12:52-31. [49] HUO Y P,WANG J F,ZUO Z W,et al. Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization[J]. Physics of Fluids,2015,27(11). [50] 杨林初,汤正成,苏宇. 静电雾化切削的雾化形态研究[J]. 江苏科技大学学报,2018,32(5):684-689. YANG Linchu,TANG Zhengcheng,SU Yu. Investigation on atomization form of electrostatic atomization cutting[J]. Journal of Jiangsu University of Science and Technology,2018,32(5):684-689. [51] 张冬冬,苏宇. 纳米流体同轴静电雾化切削荷电与加工性能研究[J]. 现代制造工程,2022(3):1-5. ZHANG Dongdong,SU Yu. Study on charging and machining performance of nanofluid coaxial electrostatic atomization cutting[J]. Modern Manufacturing Engineering,2022(3):1-5. [52] 路锦河,杜林,姜凯华,等. 导线交流电晕放电的空间电荷特征量分析[J]. 中国电机工程学报,2021,41(24):8619-8631. LU Jinhe,DU Lin,JIANG Kaihua,et al. Analysis of characteristic quantities of space charges in ac corona discharge[J]. Proceedings of the CSEE,2021,41(24):8619-8631. [53] WANG X M,LI C H,ZHANG Y B,et al. Tribology of enhanced turning using biolubricants:A comparative assessment[J]. Tribology International,2022,107766. [54] GUPTA MK,MIA M,JAMIL M,et al. Machinability investigations of hardened steel with biodegradable oil-based MQL spray system[J]. International Journal of Advanced Manufacturing Technology,2020,108(3):735-748. [55] DONG L,LI C H,ZHOU F M,et al. Temperature of the 45 steel in the minimum quantity lubricant milling with different biolubricants[J]. International Journal of Advanced Manufacturing Technology,2021,113(9-10):2779-2790. [56] GAO T,ZHANG Y B,LI C H,et al. Grindability of carbon fiber reinforced polymer using CNT biological lubricant[J]. Scientific Reports,2021,11(1):14. [57] WANG Y G,LI C H,ZHANG Y B,et al. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils[J]. Journal of Cleaner Production,2016,127:487-499. [58] BAI X F,ZHOU F M,LI C H,et al. Physicochemical properties of degradable vegetable-based oils on minimum quantity lubrication milling[J]. International Journal of Advanced Manufacturing Technology,2020,106(9-10):4143-4155. [59] GUO S M,LI C H,ZHANG Y B,et al. Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy[J]. Journal of Cleaner Production,2017,140:1060-1076. [60] VIRDI R L,CHATHA S S,SINGH H. Processing characteristics of different vegetable oil-based nanofluid MQL for grinding of Ni-Cr alloy[J]. Advances in Materials and Processing Technologies,2022. [61] YIN Q G,LI C H,DONG L,et al. Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2021,8(6):1629-1647. [62] LI B K,LI C H,ZHANG Y B,et al. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil[J]. Journal of Cleaner Production,2017,154:1-11. [63] WANG Y G,LI C H,ZHANG Y B,et al. Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(2):327-339. [64] YILDIRIM CV,SARIKAYA M,KIVAK T,et al. The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns,tool life,roughness and temperature in turning of Ni-based Inconel 625[J]. Tribology International,2019,134:443-456. [65] GAO T,LI C H,JIA D Z,et al. Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication[J]. Journal of Cleaner Production,2020,277. [66] GONG L,BERTOLINI R,GHIOTTI A,et al. Sustainable turning of Inconel 718 nickel alloy using MQL strategy based on graphene nanofluids[J]. International Journal of Advanced Manufacturing Technology,2020,108(9-10):3159-3174. [67] LI M,YU T B,ZHANG R C,et al. Experimental evaluation of an eco-friendly grinding process combining minimum quantity lubrication and graphene-enhanced plant-oil-based cutting fluid[J]. Journal of Cleaner Production,2020,244. [68] PAL A,CHATHA S S,SIDHU H S. Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid[J]. Tribology International,2020,151. [69] SINGH H,SHARMA V S,DOGRA M. Exploration of graphene assisted vegetables oil based minimum quantity lubrication for surface grinding of TI-6AL-4V-ELI[J]. Tribology International,2020,144. [70] SINGH R,DUREJA J S,DOGRA M,et al. Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy[J]. Tribology International,2020,145. [71] DUAN Z J,YIN Q G,LI C H,et al. Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations[J]. International Journal of Advanced Manufacturing Technology,2020,107(3-4):1277-1296. [72] WANG Y G,LI C H,ZHANG Y B,et al. Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids[J]. Journal of Cleaner Production,2017,142:3571-3583. [73] LI H G,ZHANG Y B,LI C H,et al. Extreme pressure and antiwear additives for lubricant:academic insights and perspectives[J]. International Journal of Advanced Manufacturing Technology,2022,120(1-2):1-27. [74] MAO C,ZOU H F,ZHOU X,et al. Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding[J]. International Journal of Advanced Manufacturing Technology,2014,71(9-12):2073-2081. [75] GAO T,LI C H,ZHANG Y B,et al. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants[J]. Tribology International,2019,131:51-63. [76] CHETAN,BEHERA B C,GHOSH S,et al. Application of nanofluids during minimum quantity lubrication:A case study in turning process[J]. Tribology International,2016,101:234-246. [77] NAJIHA M S,RAHMAN M M,KADIRGAMA K. Performance of water-based TiO2 nanofluid during the minimum quantity lubrication machining of aluminium alloy,AA6061-T6[J]. Journal of Cleaner Production,2016,135:1623-1636. [78] WANG Y G,LI C H,ZHANG Y B,et al. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids[J]. Tribology International,2016,99:198-210. [79] LV T,HUANG S Q,LIU E T,et al. Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids[J]. Journal of Manufacturing Processes,2018,34:225-237. [80] JIA D Z,ZHANG Y B,LI C H,et al. Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant[J]. Tribology International,2022,169. [81] CHETA N,BEHERA B C,GHOSH S,et al. Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions[J]. Ceramics International,2016,42(13):14873-14885. [82] JIA D Z,LI C H,ZHANG Y B,et al. Specific energy and surface roughness of minimum quantity lubrication grinding Ni-based alloy with mixed vegetable oil-based nanofluids[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2017,50:248-262. [83] MAO C,ZOU H F,HUANG X M,et al. The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication[J]. International Journal of Advanced Manufacturing Technology,2013,64(9-12):1791-1799. [84] RAPETI P,PASAM V K,GURRAM K M R,et al. Performance evaluation of vegetable oil based nano cutting fluids in machining using grey relational analysis-A step towards sustainable manufacturing[J]. Journal of Cleaner Production,2018,172:2862-2875. [85] ZHANG Y B,LI C H,JIA D Z,et al. Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil[J]. Journal of Cleaner Production,2015,87:930-940. [86] 张彦彬,李长河,贾东洲,等. 纳米粒子射流微量润滑磨削镍基合金润滑性能实验评价[J]. 组合机床与自动化加工技术,2015(6):113-117. ZHANG Yanbin,LI Changhe,JIA Dongzhou,et al. Experimental evaluation into lubricating property of nanoparticles jet MQL grinding nickel base alloy[J]. Modular Machine Tool & Automatic Manufacturing Technique,2015(6):113-117. [87] AWALE A S,VASHISTA M,YUSUFZAI M Z K. Multi-objective optimization of MQL mist parameters for eco-friendly grinding[J]. Journal of Manufacturing Processes,2020,56:75-86. [88] SARIKAYA M,GULLU A. Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL[J]. Journal of Cleaner Production,2014,65:604-616. [89] SARIKAYA M,GULLU A. Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25[J]. Journal of Cleaner Production,2015,91:347-357. [90] 孔晓瑶,袁松梅,朱光远,等. 基于灰色关联分析的微量润滑系统工艺参数优化[J]. 航空制造技术,2021,64(6):73-81. KONG Xiaoyao,YUAN Songmei,ZHU Guangyuan,et al. Optimization of process parameters of minimum quantity lubrication system based on grey relation analysis[J]. Aeronautical Manufacturing Technology,2021,64(6):73-81. [91] MAKHESANA M A,PATEL K M,KHANNA N. Analysis of vegetable oil-based nano-lubricant technique for improving machinability of Inconel 690[J]. Journal of Manufacturing Processes,2022,77:708-721. [92] LI CH,ZHANG Q,WANG S,et al. Useful fluid flow and flow rate in grinding:An experimental verification[J]. International Journal of Advanced Manufacturing Technology,2015,81(5-8):785-794. [93] TAWAKOLI T,HADAD M J,SADEGHI M H. Influence of oil mist parameters on minimum quantity lubrication-MQL grinding process[J]. International Journal of Machine Tools & Manufacture,2010,50(6):521-531. [94] WANG YG,LI C H,ZHANG Y B,et al. Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment[J]. Journal of Manufacturing Processes,2017,26:94-104. [95] 张春燕,王贵成,裴宏杰,等. 基于毛细管理论的MQL理论模型及应用[J]. 机械设计与制造,2009(9):62-64. ZHANG Chunyan,WANG Guicheng,PEI Hongjie,et al. MQL theoretical model and application based on capillaries[J]. Machinery Design & Manufacture,2009(9):62-64. [96] 袁松梅,朱光远,王莉. 绿色切削微量润滑技术润滑剂特性研究进展[J]. 机械工程学报,2017,53(17):131-140. YUAN Songmei,ZHU Guangyuan,WANG Li. Recent progress on lubricant characteristics of minimum quantity lubrication (MQL) technology in green cutting[J]. Journal of Mechanical Engineering,2017,53(17):131-140. [97] OBIKAWA T,ASANO Y,KAMATA Y. Computer fluid dynamics analysis for efficient spraying of oil mist in finish-turning of Inconel 718[J]. International Journal of Machine Tools & Manufacture,2009,49(12-13):971-978. [98] MARUDA R W,KROLCZYK G M,FELDSHTEIN E,et al. A study on droplets sizes,their distribution and heat exchange for minimum quantity cooling lubrication (MQCL)[J]. International Journal of Machine Tools & Manufacture,2016,100:81-92. [99] ZHANG S,ZHANG C,SHI W,et al. Investigation of oil droplet coverage rate and droplet size distribution under minimum quantity lubrication condition[J]. Journal of Mechanical Engineering,2018(3):169-177. [100] PARK K H,OLORTEGUI-YUME J,YOON M C,et al. A study on droplets and their distribution for minimum quantity lubrication (MQL)[J]. International Journal of Machine Tools & Manufacture,2010,50(9):824-833. [101] KONG X,YUAN S,ZHU G,et al. Influence of MQL system parameters on atomization characteristics[J]. China Mechanical Engineering,2021,32(5):579-586. [102] 裴宏杰,李付,陈钰荧,等. 微量润滑系统的喷射雾化特性研究[J]. 航空制造技术,2022,65(7):70-76. PEI Hongjie,LI Fu,CHEN Yuyin,et al. Atomizing spray characteristics study of minimum quantity lubrication system[J]. Aeronautical Manufacturing Technology,2022,65(7):70-76. [103] 吕涛,黄水泉,胡晓冬,等. 静电微量润滑气雾特性及其切削加工性能研究[J]. 机械工程学报,2019,55(1):129-138. LÜ Tao,HUANG Shuiquan,HU Xiaodong,et al. Study on aerosol characteristics of electrostatic minimum quantity lubrication and its turning performance[J]. Journal of Mechanical Engineering,2019,55(1):129-138. [104] 陈晓杰,苏宇. 不同润滑液的电润湿性能研究[J]. 润滑与密封,2021,46(2):50-55. CHEN Xiaojie,SU Yu. Electrowetting Performance Research of Different Lubricants[J]. Lubrication Engineering,2021,46(2):50-55. [105] HUANG S Q,YAO W Q,HU J D,et al. Tribological performance and lubrication mechanism of contact-charged electrostatic spray lubrication technique[J]. Tribology Letters,2015,59(2):15. [106] HUANG S Q,LV T,WANG M H,et al. Enhanced machining performance and lubrication mechanism of electrostatic minimum quantity lubrication-EMQL milling process[J]. International Journal of Advanced Manufacturing Technology,2018,94(1-4):655-666. [107] XU X F,HUANG S Q,WANG M H,et al. A study on process parameters in end milling of AISI-304 stainless steel under electrostatic minimum quantity lubrication conditions[J]. International Journal of Advanced Manufacturing Technology,2017,90(1-4):979-989. [108] HUANG S Q,LV T,WANG M H,et al. Effects of machining and oil mist parameters on electrostatic minimum quantity lubrication-EMQL turning process[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(2):317-326. [109] 贾东洲,张乃庆,刘波,等. 静电雾化微量润滑粒径分布特性与磨削表面质量评价[J]. 金刚石与磨料磨具工程,2021,41(3):89-95. JIA Dongzhou,ZHANG Naiqing,LIU Bo,et al. Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation[J]. Diamond & Abrasives Engineering,2021,41(3):89-95. [110] 张晓阳,李长河,张彦彬,等. 电场参数对雾化特性及微量润滑磨削性能影响的实验研究[J]. 制造技术与机床,2018(10):105-111. ZHANG Xiaoyang,LI Changhe,ZHANG Yanbin,et al. Experimental study of effect of electric field parameters on atomization characteristics and grinding performance of minimal quantity lubrication[J]. Manufacturing Technology & Machine Tool,2018(10):105-111. [111] JIA D Z,LI C H,ZHANG Y B,et al. Experimental research on the influence of the jet parameters of minimum quantity lubrication on the lubricating property of Ni-based alloy grinding[J]. International Journal of Advanced Manufacturing Technology,2016,82(1-4):617-630. [112] LV T,XU X F,YU A B,et al. Oil mist concentration and machining characteristics of SiO2 water-based nano-lubricants in electrostatic minimum quantity lubrication-EMQL milling[J]. Journal of Materials Processing Technology,2021,290. [113] MASKI D,DURAIRAJ D. Effects of electrode voltage,liquid flow rate,and liquid properties on spray chargeability of an air-assisted electrostatic-induction spray-charging system[J]. Journal of Electrostatics,2010,68(2):152-158. [114] 王贞涛,王军锋,顾利平. 生物柴油雾滴静电破碎机理与实验研究[J]. 高电压技术,2013,39(1):135-140. WANG Zhentao,WANG Junfeng,GU Liping. Theoretical and experimental investigation on mechanism of biodiesel droplets electrostatic breakup[J]. High Voltage Engineering,2013,39(1):135-140. [115] ZHANG Y B,LI C H,YANG M,et al. Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil[J]. Journal of Cleaner Production,2016,139:685-705. [116] GAURAV G,SHARMA A,DANGAYACH G S,et al. Assessment of jojoba as a pure and nano-fluid base oil in minimum quantity lubrication (MQL) hard-turning of Ti-6Al-4V:A step towards sustainable machining[J]. Journal of Cleaner Production,2020,272:122553. [117] LI B K,LI CH,ZHANG Y B,et al. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil[J]. Chinese Journal of Aeronautics,2016,29(4):1084-1095. [118] PAL A,CHATHA S S,SIDHU H S. Performance evaluation of the minimum quantity lubrication with Al2O3-mixed vegetable-oil-based cutting fluid in drilling of AISI 321 stainless steel[J]. Journal of Manufacturing Processes,2021,66:238-249. [119] PAL A,CHATHA S S,SIDHU H S. Assessing the lubrication performance of various vegetable oil-based nano-cutting fluids via eco-friendly MQL technique in drilling of AISI 321 stainless steel[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2022,44(4). [120] PAL A,CHATHA SS,SINGH K. Performance evaluation of minimum quantity lubrication technique in grinding of AISI 202 stainless steel using nano-MoS(2)with vegetable-based cutting fluid[J]. International Journal of Advanced Manufacturing Technology,2020,110(1-2):125-137. [121] LEE K,HWANG Y,CHEONG S,et al. Understanding the role of nanoparticles in nano-oil lubrication[J]. Tribology Letters,2009,35(2):127-131. [122] YANG M,LI C H,ZHANG Y B,et al. Experimental research on microscale grinding temperature under different nanoparticle jet minimum quantity cooling[J]. Materials and Manufacturing Processes,2017,32(6):589-597. [123] CUI W Z,BAI M L,LV J Z,et al. On the flow characteristics of nanofluids by experimental approach and molecular dynamics simulation[J]. Experimental Thermal and Fluid Science,2012,39:148-157. [124] MIN Y,LI Changhe,ZHANG Yanbin,et al. Theoretical analysis and experimental research on temperature field of microscale bone grinding under nanoparticle jet mist cooling[J]. Journal of Mechanical Engineering,2018,54(18):194-203. [125] YANG M,LI C H,LUO L,et al. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling[J]. International Communications in Heat and Mass Transfer,2021,125. [126] YANG M,LI C H,ZHANG Y B,et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools & Manufacture,2017,122:55-65. [127] YANG M,LI C H,ZHANG Y B,et al. Research on microscale skull grinding temperature field under different cooling conditions[J]. Applied Thermal Engineering,2017,126:525-537. [128] SAID Z,ARORA S,FAROOQ S,et al. Recent advances on improved optical,thermal,and radiative characteristics of plasmonic nanofluids:Academic insights and perspectives[J]. Solar Energy Materials and Solar Cells,2022,236. [129] 杨敏,李长河,张彦彬,等. 骨外科纳米粒子射流喷雾式微磨削温度场理论分析及实验[J]. 机械工程学报,2018,54(18):194-203. YANG Min,LI Changhe,ZHANG Yanbin,et al. Theoretical analysis and experimental research on temperature field of microscale bone grinding under nanoparticle jet mist cooling[J]. Journal of Mechanical Engineering,2018,54(18):194-203. [130] SUI M H,LI C H,WU W T,et al. Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication[J]. Journal of Thermal Science and Engineering Applications,2021,13(5). [131] KHAN M M A,MITHU M A H,DHAR N R. Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid[J]. Journal of Materials Processing Technology,2009,209(15-16):5573-5583. [132] ZHANG D K,LI C H,ZHANG Y B,et al. Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding[J]. International Journal of Advanced Manufacturing Technology,2015,78(5-8):1275-1288. [133] SALIMON J,SALIH N,YOUSIF E. Biolubricants:Raw materials,chemical modifications and environmental benefits[J]. European Journal of Lipid Science and Technology,2010,112(5):519-530. [134] PARK KH,SUHAIMI MA,YANG G D,et al. Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL)[J]. International Journal of Precision Engineering and Manufacturing,2017,18(1):5-14. [135] VIRDI R L,CHATHA S S,SINGH H. Performance evaluation of nanofluid-based minimum quantity lubrication grinding of Ni-Cr alloy under the influence of CuO nanoparticles[J]. Advances in Manufacturing,2021,9(4):580-591. [136] ZHANG D K,LI C H,JIA D Z,et al. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding[J]. Chinese Journal of Aeronautics,2015,28(2):570-581. [137] 施壮,郭树明,刘红军,等. 生物润滑剂微量润滑磨削GH4169镍基合金性能实验评价[J]. 表面技术,2021,50(12):71-84. SHI Zhuang,GUO Shuming,LIU Hongjun,et al. Experimental evaluation of minimum quantity lubrication of biological lubricant on grinding properties of GH4169 nickel-base alloy[J]. Surface Technology,2021,50(12):71-84. [138] CUI X,LI C H,ZHANG Y B,et al. Tribological properties under the grinding wheel and workpiece interface by using graphene nanofluid lubricant[J]. International Journal of Advanced Manufacturing Technology,2019,104(9-12):3943-3958. [139] QUINCHIA L A,DELGADO M A,REDDYHOFF T,et al. Tribological studies of potential vegetable oil-based lubricants containing environmentally friendly viscosity modifiers[J]. Tribology International,2014,69:110-117. [140] HUANG S Q,WANG Z,YAO W Q,et al. Tribological evaluation of contact-charged electrostatic spray lubrication as a new near-dry machining technique[J]. Tribology International,2015,91:74-84. [141] 黄水泉,李中亚,姚伟强,等. 荷电植物润滑油的摩擦学性能研究[J]. 摩擦学学报,2014(4):371-378. HUANG Shuiquan,LI Zhongya,YAO Weiqiang,et al. Tribological performance of charged vegetable lubricants[J]. Tribology,2014(4):371-378. [142] 贾东洲,李长河,张彦彬,等. 钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J]. 机械工程学报,2022,58(5):198-211. JIA Dongzhou,LI Changhe,ZHANG Yanbin,et al. Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant[J]. Journal of Mechanical Engineering,2022,58(5):198-211. [143] HUANG S Q,LV T,XU X F,et al. Experimental evaluation on the effect of electrostatic minimum quantity lubrication (EMQL) in end milling of stainless steels[J]. Machining Science and Technology,2018,22(2):271-286. [144] 林建斌,吕涛,黄水泉,等. 基于静电微量润滑技术的磨削加工性能试验研究[J]. 中国机械工程,2018,29(23):2783-2791. LIN Jianbin,LÜ Tao,HUANG Shuiquan,et al. Experimental investigation on grinding performance based on EMQL technology[J]. China Mechanical Engineering,2018,29(23):2783-2791. [145] SHAH P,GADKARI A,SHARMA A,et al. Comparison of machining performance under MQL and ultra-high voltage EMQL conditions based on tribological properties[J]. Tribology International,2021,1537. [146] BARTOLOMEIS A D,NEWMAN S T,SHOKRANI A. Initial investigation on surface integrity when machining inconel 718 with conventional and electrostatic lubrication[J]. Procedia CIRP,2020,87:65-70. [147] SU Y,LU Q,YU T,et al. Machining and environmental effects of electrostatic atomization lubrication in milling operation[J]. International Journal of Advanced Manufacturing Technology,2019,104(5-8):2773-2782. [148] XU X F,FENG B H,HUANG S Q,et al. Capillary penetration mechanism and machining characteristics of lubricant droplets in electrostatic minimum quantity lubrication (EMQL) grinding[J]. Journal of Manufacturing Processes,2019,45:571-578. [149] XU X F,LV T,LUAN Z Q,et al. Capillary penetration mechanism and oil mist concentration of Al2O3 nanoparticle fluids in electrostatic minimum quantity lubrication (EMQL) milling[J]. International Journal of Advanced Manufacturing Technology,2019,104(5-8):1937-1951. [150] 贾东洲,李长河,王胜,等. 纳米流体静电雾化可控射流微量润滑磨削系统:中国,103072084B[P]. 2013-05-01. JIA Dongzhou,LI Changhe,WANG Sheng,et al. Nano fluid electrostatic atomizing controllable jet stream minimal lubricating and grinding system:China,103072084B[P]. 2013-05-01. [151] CUI X,LI C H,ZHANG Y B,et al. A comparative assessment of force,temperature and wheel wear in sustainable grinding aerospace alloy using bio-lubricant[J]. Frontier of Mechanical Engineering,2022. [152] YANG Y Y,YANG M,LI C H,et al. Machinability of ultrasonic vibration assisted micro-grinding in biological bone using nanolubricant[J]. Frontier of Mechanical Engineering,2022,18(1):1. [153] DUAN Z J,LI C H,ZHANG Y B,et al. Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant[J]. Frontier of Mechanical Engineering,2022,18(1):4. [154] BIERMANN D,ABRAHAMS H,METZGER M. Experimental investigation of tool wear and chip formation in cryogenic machining of titanium alloys[J]. Advances in Manufacturing,2015,3(4):292-299. [155] JEBARAJ M,KUMAR M P,ANBURAJ R. Effect of LN2 and CO2 coolants in milling of 55NiCrMoV7 steel[J]. Journal of Manufacturing Processes,2020,53:318-327. [156] PEREIRA O,RODRIGUEZ A,BARREIRO J,et al. Nozzle design for combined use of mql and cryogenic gas in machining[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2017,4(1):87-95. [157] SHOKRANI A,AL-SAMARRAI I,NEWMAN S T. Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy[J]. Journal of Manufacturing Processes,2019,43:229-243. [158] ZOU L,HUANG Y,ZHOU M,et al. Effect of cryogenic minimum quantity lubrication on machinability of diamond tool in ultraprecision turning of 3Cr2NiMo steel[J]. Materials and Manufacturing Processes,2018,33(9):943-949. [159] 王晓铭,李长河,张彦彬,等. 微量润滑赋能雾化与供给系统关键技术研究进展[J]. 表面技术,2022,51(9):1-18. WANG Xiaoming,LI Changhe,ZHANG Yanbin,et al. Research progress on enabled atomization and supply system of minimum quantity lubrication[J]. Surface Technology,2022,51(9):1-18. [160] JUN M B G,JOSHI S S,DEVOR R E,et al. An experimental evaluation of an atomization-based cutting fluid application system for micromachining[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme,2008,130(3):031118. [161] NATH C,KAPOOR S G,SRIVASTAVA A K,et al. Study of droplet spray behavior of an atomization-based cutting fluid spray system for machining titanium alloys[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2014,136(2):021004. [162] HOYNE A C,NATH C,KAPOOR S G. On Cutting temperature measurement during titanium machining with an atomization-based cutting fluid spray system[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme,2015,137(2):024502. [163] HOYNE A C,NATH C,KAPOOR S G. Characterization of fluid film produced by an atomization-based cutting fluid spray system during machining[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme,2013,135(5):051006. [164] 曹洋,李华,任坤,等. 球面聚焦超声辅助汽雾冷却系统换热特性研究[J]. 中国机械工程,2018,29(11):1279-1284. CAO Yang,LI Hua,REN Kun,et al. Research on heat transfer performances of spherical focused ultrasound assisted ultrasonic atomizing cooling system[J]. China Mechanical Engineering,2018,29(11):1279-1284. [165] HUANG WT,CHOU FI,TSAI J T,et al. Application of graphene nanofluid/ultrasonic atomization mql system in micromilling and development of optimal predictive model for SKH-9 high-speed steel using fuzzy-logic-based multi-objective design[J]. International Journal of Fuzzy Systems,2020,22(7):2101-2118. [166] HUANG WT,CHOU FI,TSAI J T,et al. Optimal design of parameters for the nanofluid/ultrasonic atomization minimal quantity lubrication in a micromilling process[J]. IEEE Transactions on Industrial Informatics,2020:16(8),5202-5212. [167] HUANG WT,LIU WS,TSAI J T,et al. Multiple quality characteristics of nanofluid/ultrasonic atomization minimum quality lubrication for grinding hardened Mold steel[J]. IEEE Transactions on Automation Science and Engineering,2018,15(3):1065-1077. [168] HUANG WT,TSAI J T,HSU C A F,et al. Multiple performance characteristics in the application of Taguchi fuzzy method in nanofluid/ultrasonic atomization minimum quantity lubrication for grinding Inconel 718 alloys[J]. International Journal of Fuzzy Systems,2022,24(1):294-309. |
[1] | 苏志朋, 梁志强, 李娟, 王飞, 魏正义, 刘月红, 金惟薇, 马悦, 殷振, 王西彬. 钛合金微槽超声螺线辅助铣磨加工试验研究[J]. 机械工程学报, 2024, 60(9): 5-12. |
[2] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[3] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[4] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[5] | 吴淑晶, 王大中, 谷顾全, 黄帅, 董国军, 郭国强, 安庆龙, 李长河. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报, 2024, 60(9): 152-167. |
[6] | 李继成, 陈广俊, 许金凯, 于化东. C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究[J]. 机械工程学报, 2024, 60(9): 189-205. |
[7] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[8] | 王晓铭, 李长河, 杨敏, 张彦彬, 刘明政, 高腾, 崔歆, 王大中, 曹华军, 陈云, 刘波. 纳米生物润滑剂微量润滑加工物理机制研究进展[J]. 机械工程学报, 2024, 60(9): 286-322. |
[9] | 崔歆, 李长河, 张彦彬, 杨敏, 周宗明, 刘波, 王春锦. 磁力牵引纳米润滑剂微量润滑磨削力模型与验证[J]. 机械工程学报, 2024, 60(9): 323-337. |
[10] | 王帅帅, 段振景, 刘吉宇, 李育恒, 王梓恒, 周瑜阳, 刘新, 宋金龙, 孙晶. 冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J]. 机械工程学报, 2024, 60(9): 338-350. |
[11] | 关集俱, 祝正兵, 徐正亚, 栾志强, 许雪峰. CNTs@T321微囊制备的纳米流体与砂轮磨削时的双重润滑增效机制[J]. 机械工程学报, 2024, 60(9): 351-363. |
[12] | 何喆, 黄新春, 宋艺辉, 史耀耀, 张兆顷, 史恺宁. 服役温度影响的DD6单晶高温合金磨削/喷丸加工表面完整性演化规律研究[J]. 机械工程学报, 2024, 60(9): 410-420. |
[13] | 刘安南, 刘战强, 蔡士祥, 赵金富, 王兵. 切削加工车削刀具断屑装置及技术研究综述[J]. 机械工程学报, 2024, 60(7): 334-349. |
[14] | 丁文锋, 赵俊帅, 张洪港, 赵彪, 司文元, 宋强, 黄庆飞. 齿轮高效精密磨削加工及表面完整性控制技术研究进展[J]. 机械工程学报, 2024, 60(7): 350-373. |
[15] | 杨树财, 韩佩, 佟欣, 刘献礼, 张晓辉. 刀具介观几何特征成形技术及其作用研究[J]. 机械工程学报, 2024, 60(5): 317-351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||