[1] ZOU Y,ZHANG W,ZHANG Z. Liftoff of an electromagnetically driven insect-inspired flapping-wing robot[J]. IEEE Transactions on Robotics,2016,32(5):1285-1289. [2] JAFFERIS N,HELBLING E,KARPELSON M,et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle[J]. Nature,2019,570(7762):491-495. [3] PHAN H,PARK H. Mechanisms of collision recovery in flying beetles and flapping-wing robots[J]. Science,2020,370(6521):1214-1219. [4] 梁友鉴,赵杰亮,阎绍泽. 基于蜜蜂腹部变体机制的空天飞行器仿生变体头锥设计[J]. 机械工程学报,2020,56(5):47-54. LIANG Youjian,ZHAO Jieliang,YAN Shaoze. Bionic design of morphing nose cone for aerospace vehicle based on the deformable mechanism of honeybee abdomen[J]. Journal of Mechanical Engineering,2020,56(5):47-54. [5] WANG C,ZHANG W,ZHAO J,et al. Design,takeoff and steering torques modulation of an 80-mg insect-scale flapping-wing robot[J]. Micro & Nano Letters,2020,15(15):1079-1083. [6] PHAN H,AURECIANUS S,AU T,et al. Towards long-endurance flight of an insect-inspired,tailless,two-winged,flapping-wing flying robot[J]. IEEE Robotics and Automation Letters,2020,5(4):5059-5066. [7] 赵杰亮,赵真,余丽,等. 基于脑电刺激的蜜蜂飞行控制系统设计[J]. 机械工程学报,2021,57(15):45-52. ZHAO Jieliang,ZHAO Zhen,YU Li,et al. Design of flight control system for honeybee based on EEG stimulation[J]. Journal of Mechanical Engineering,2021,57(15):45-52. [8] 王国彪,陈殿生,陈科位,等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报,2015,51(13):27-44. WANG Guobiao,CHEN Diansheng,CHEN Kewei,et al. The current research status and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering,2015,51(13):27-44. [9] HAWKES E,LENTINK D. Fruit fly scale robots can hover longer with flapping wings than with spinning wings[J]. Journal of the Royal Society Interface,2016,13(123):20160730. [10] CROON G,WAGTER C,SEIDL T. Enhancing optical-flow-based control by learning visual appearance cues for flying robots[J]. Nature Machine Intelligence,2021,3(1):33-41. [11] 张弘志,宋笔锋,孙中超,等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报,2021,42(2):80-101. ZHANG Hongzhi,SONG Bifeng,SUN Zhongchao,et al. Driving mechanism of flapping wing aircraft:Review and prospect[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2):80-101. [12] WANG J,CHEN W,XIAO X,et al. A survey of the development of biomimetic intelligence and robotics[J]. Biomimetic Intelligence and Robotics,2021,1:100001. [13] TIAN Y,PESIKA N,ZENG H,et al. Adhesion and friction in gecko toe attachment and detachment[J]. Proceedings of the National Academy of Sciences,2007,103(51):19320-19325. [14] 张正杰,吉爱红,王周义,等. 用于壁虎脚掌接触力测试的3-维传感器[J]. 传感技术学报,2007,20(6):1271-1274. ZHANG Zhengjie,JI Aihong,WANG Zhouyi,et al. 3-Dimensional sensor for measuring geckos' ground reaction force[J]. Chinese Journal of Sensors and Actuators,2007,20(6):1271-1274. [15] WANG Z,WANG J,JI A. Behavior and dynamics of gecko's locomotion:The effects of moving directions on a vertical surface[J]. Chinese Science Bulletin,2011,56(6):573-583. [16] DAI Z,WANG Z,JI A. Dynamics of gecko locomotion:A force-measuring array to measure 3D reaction forces[J]. The Journal of Experimental Biology,2011,214(5):703-708. [17] NAYLOR E,HIGHAM T. Attachment beyond the adhesive system:The contribution of claws to gecko clinging and locomotion[J]. Integrative and Comparative Biology,2019,59(1):168-181. [18] SONG Y,YUAN J,ZHANG L,et al. Size,shape and orientation of macro-sized substrate protrusions affect the toe and foot adhesion of geckos[J]. Journal of Experimental Biology,2021,224(8):jeb223438. [19] WANG L,ZHOU Q XU S. Role of claws and pads in locust Locusta migratoria manilensis attaching to substrates[J]. Chinese Science Bulletin,2011,56(8):789-795. [20] HAN L,WANG Z,JI A,et al. Grip and detachment of locusts on inverted sandpaper substrates[J]. Bioinspiration & Biomimetics,2011,6(4):046005. [21] WANG L,JOHANNESSON C,ZHOU Q. Effect of surface roughness on attachment ability of locust Locusta migratoria manilensis[J]. Wear,2015,332-333:694-701. [22] WANG L,ZHOU Q. Friction force of locust locusta migratoria manilensis (orthoptera,locustidae) on slippery zones surface of pitchers from four Nepenthes species[J]. Tribology Letters,2011,44(3):345-353. [23] ZHANG P,CHEN H,ZHANG D. Investigation of the anisotropic morphology-induced effects of the slippery zone in pitchers of Nepenthes alata[J]. Journal of Bionic Engineering,2015,12(1):79-87. [24] WANG L,DONG S,ZHOU Q. Slippery surface of Nepenthes alata pitcher:The role of lunate cell and wax crystal in restricting attachment ability of ant camponotus japonicus mayr[J]. Journal of Bionic Engineering,2016,13(3):373-387. [25] 王立新,黄风山,周强. 致灾农业昆虫捕集滑板表面结构仿生构建与性能验证[J]. 农业工程学报,2015,31(20):34-40. WANG Lixin,HUANG Fengshan,ZHOU Qiang. Surface structure biomimetic design and performance testing of slippery trapping plate used for controlling agricultural insect[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(20):34-40. [26] 毕可东,宋小闯,王玉娟,等. 猪笼草蜡质滑移区表面反粘附特性的研究[J]. 机械工程学报,2015,51(23):103-109. BI Kedong,SONG Xiaochuang,WANG Yujuan,et al. Anti-adhesion mechanisms of Nepenthes waxy slippery zone surface[J]. Journal of Mechanical Engineering,2015,51(23):103-109. [27] 王玉娟,宋小闯,陈云飞. 猪笼草捕虫笼超滑表面黏附特性测量和抗黏稳定性分析[J]. 东南大学学报,2017,47(2):259-264. WANG Yujuan,SONG Xiaochuang,CHEN Yunfei. Measurement of adhesion properties and analysis of anti-adhension stability on super-slippery surfaces of Nepenthes pitchers[J]. Journal of Southeast University,2017,47(2):259-264. [28] 王玉娟,宋小闯,杨决宽,等. 典型构筑植物表面不同湿度条件下黏附和摩擦特性研究[J]. 机械工程学报,2017,53(21):86-94. WANG Yujuan,SONG Xiaochuang,YANG Juekuan,et al. Adhesion and friction properties of plant surfaces with typical architectures in different humidity conditions[J]. Journal of Mechanical Engineering,2017,53(21):86-94. [29] WANG L,TAO D,DONG S,et al. Contributions of lunate cells and wax crystals to the surface anisotropy of Nepenthes slippery zone[J]. Royal Society Open Science,2018,5(9):180766. [30] 闫征,王立新,潘盼. 仿生原型毫-微牛级力测试技术研究进展[J]. 河北科技大学学报,2021,42(3):205-213. YAN Zheng,WANG Lixin,PAN Pan. Research progress on milli-micro Newton level force measurement technology of bionic prototype[J]. Journal of Hebei University of Science and Technology,2021,42(3):205-213. [31] FEDERLE W,ROHRSEITZ K,HOLLDOBLER B. Attachment forces of ants measured with a centrifuge:Better 'wax-runners' have a poorer attachment to a smooth surface[J]. Journal of Experimental Biology,2000,203(3):505-512. [32] 周群,于鹏,何斌,等. 蚂蚁附着力的测试及ANSYS分析[J]. 同济大学学报,2008,36(5):670-673. ZHOU Qun,YU Peng,HE Bin,et al. Testing of wet adhesive forces of ants and ansys analysis[J]. Journal of Tongji University,2008,36(5):670-673. [33] 周群,何斌,钱明刚,等. 昆虫足垫吸附系统的摩擦力和吸附力实验分析[J]. 上海理工大学学报,2008,30(2):143-146. ZHOU Qun,HE Bin,QIAN Minggang,et al. Analysis on friction and adhesive force of insects pads[J]. Journal of University of Shanghai for Science and Technology,2008,30(2):143-146. [34] 王立新,翟利刚. 离心式昆虫微力测试系统设计[J]. 河北科技大学学报,2014,35(1):1-5. WANG Lixin,ZHAI Ligang. Design of centrifugal insect micro-force measuring system[J]. Journal of Hebei University of Science and Technology,2014,35(1):1-5. [35] LABONTE D,FEDERLE W. Scaling and biomechanics of surface attachment in climbing animals[J]. Philosophical Transactions of the Royal Society of London,2015,370(1661):20140027. [36] YIN W,ZHENG Y,LU H,et al. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs[J]. Applied Physics Letters,2016,109(16):663-2310. [37] ZHENG Y,LU H,YIN W,et al. Elegant shadow making tiny force visible for water-walking arthropods and updated archimedes' principle[J]. Langmuir,2016,32(41):10522-10528. [38] LU H,ZHENG Y,YIN W,et al. Propulsion principles of water striders in sculling forward through shadow method[J]. Journal of Bionic Engineering,2018,15(3):516-525. [39] ZHENG Y,LU H,JIANG J,et al. Walking of spider on water surface studied from its leg shadows[J]. Chinese Physics B,2018,27(8):084702. [40] ZHENG Y,YIN W,LU H,et al. Revealing stepping forces in sub-mg tiny insect walking[J]. Chinese Physics B,2020,29(12):124703. |