机械工程学报 ›› 2023, Vol. 59 ›› Issue (5): 11-28.doi: 10.3901/JME.2023.05.011
马吉良, 彭军, 郭艳婕, 陈雪峰
收稿日期:
2022-06-14
修回日期:
2022-12-24
出版日期:
2023-03-05
发布日期:
2023-04-20
通讯作者:
陈雪峰(通信作者),男,1975年出生,博士,教授,博士研究生导师。主要研究方向为主动控制与检测机器人、机械设备健康监测与智能维护。E-mail:chenxf@xjtu.edu.cn
作者简介:
马吉良,男,1998年出生,博士研究生。主要研究方向为仿生爬壁机器人黏附机理研究及应用。E-mail:xiaoma0233@stu.xjtu.edu.cn;彭军,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为特种检测机器人和智能柔性传感。E-mail:pengjun@xjtu.edu.cn;郭艳婕,女,1988年出生,博士,高级工程师。主要研究方向为机械装备故障诊断理论、磨损图像识别技术和摩擦起电应用。E-mail:guoyanjie@xjtu.edu.cn
基金资助:
MA Jiliang, PENG Jun, GUO Yanjie, CHEN Xuefeng
Received:
2022-06-14
Revised:
2022-12-24
Online:
2023-03-05
Published:
2023-04-20
摘要: 爬壁机器人是指能够依附在物体的表面进行多自由度移动并完成作业的机电系统,特别适用于执行特殊任务,因而具有良好的应用前景和广泛的市场需求。根据黏附机理的不同,爬壁机器人可分为负压吸附、静电黏附、仿壁虎干黏附、仿生湿黏附等类型。从黏附机理、应用范围以及黏附特点三个方面概述了爬壁机器人领域的国内外研究现状,为统一分析比较不同种类爬壁机器人的负载性能,提出基于比黏附能密度的机器人整体黏附性能分析方法,并为解决其大负载和小体积之间的矛盾提出新的材料和结构设计思路,分析微型爬壁机器人在航空发动机故障检测领域的应用前景,总结出其在材料智能化、驱动新型化、体积小型化和黏附机理协同化等方向的发展趋势。
中图分类号:
马吉良, 彭军, 郭艳婕, 陈雪峰. 爬壁机器人研究现状及发展趋势[J]. 机械工程学报, 2023, 59(5): 11-28.
MA Jiliang, PENG Jun, GUO Yanjie, CHEN Xuefeng. Research Status and Development Trend of Wall Climbing Robot[J]. Journal of Mechanical Engineering, 2023, 59(5): 11-28.
[1] LI Y,KRAHN J,MENON C. Bioinspired dry adhesive materials and their application in robotics:A review[J]. Journal of Bionic Engineering,2016,13(2):181-199. [2] SAMEOTO D,MENON C. Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives[J]. Smart Materials and Structures,2010,19(10):103001. [3] ZHANG C,MCADORNS D,GRUNION J C. Nano/micro-manufacturing of bioinspired materials:A review of methods to mimic natural structures[J]. Advanced Materials,2016,28(30):6292-6321. [4] LI X,TAO D,LU H,et al. Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application[J]. Surface Topography:Metrology and Properties,2019,7(2):023001. [5] 张奇峰,张运修,张艾群. 深海小型爬行机器人研究现状[J]. 机器人,2019,41(2):250-264. ZHANG Qifeng,ZHANG Yunxiu,ZHANG Aiqun. Research status of small deep-sea crawling robot[J]. Robot,2019,41(2):250-264. [6] 胡冰山,王立文,付庄,等. 带仿生吸盘的微型爬壁机器人设计及其吸附特性[J]. 哈尔滨工程大学学报,2009(9):1012-1017. HU Bingshan,WANG Liwen,FU Zhuang,et al. Design and adsorption characteristics of micro wall-climbing robot with bionic sucker[J]. Journal of Harbin Engineering University,2009(9):1012-1017. [7] 任鸟飞,汪小华,王辉静,等. 仿壁虎微纳米粘附阵列研究进展[J]. 微纳电子技术,2006,43(8):386-392. REN Niaofei,WANG Xiaohua,WANG Huijing,et al. Research progress of gecko-like micro-nano adhesive array[J]. Micronanoelectronic Technology,2006,43(8):386-392. [8] BAIK S,LEE H J,KIM D W,et al. Bioinspired adhesive architectures:From skin patch to integrated bioelectronics[J]. Advanced Materials,2019,31(34):1803309. [9] 孙锦山,杨庆华,阮健. 气动多吸盘爬壁机器人[J]. 液压与气动,2005(8):56-59. SUN Jinshan,YANG Qinghua,RUAN Jian. Pneumatic multi-sucker wall climbing robot[J]. Chinese Hydraulics & Pneumatics,2005(8):56-59. [10] 刘淑霞,王炎,徐殿国,等. 爬壁机器人技术的应用[J]. 机器人,1999,21(2):148-155. LIU Shuxia,WANG Yan,XU Dianguo,et al. Application of wall-climbing robot technology[J]. Robot,1999,21(2):148-155. [11] 薛胜雄,任启乐,陈正文,等. 磁隙式爬壁机器人的研制[J]. 机械工程学报,2011,47(21):37-42. XUE Shengxiong,REN Qile,CHEN Zhengwen,et al. Development of magnetic wall climbing robot[J]. Journal of Mechanical Engineering,2011,47(21):37-42. [12] GUO J,LENG J,ROSSITER J. Electroadhesion technologies for robotics:A comprehensive review[J]. IEEE Transactions on Robotics,2019,36(2):313-327. [13] 王黎明,胡青春. 基于静电吸附原理的双履带爬壁机器人设计[J]. 机械设计,2012,29(4):22-25. WANG Liming,HU Qingchun. Design of double-tracked wall-climbing robot based on electrostatic adsorption principle[J]. Journal of Machine Design,2012,29(4):22-25. [14] RICH S I,WOOD R J,MAJIDI C. Untethered soft robotics[J]. Nature Electronics,2018,1(2):102-112. [15] 王国彪,陈殿生,陈科位,等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报,2015,51(13):27-44. WANG Guobiao,CHEN Diansheng,CHEN Kewei,et al. Research status and development trend of bionic robot[J]. Journal of Mechanical Engineering,2015,51(13):27-44. [16] 黄龙,张卫华,陈今茂,等. 爬壁机器人的研究现状与发展趋势[J]. 机械工程与技术,2021,10:345-363. HUANG Long,ZHANG Weihua,CHEN Jinmao,et al. Research status and development trend of wall-climbing robot[J]. Mechanical Engineering and Technology,2021,10:345-363. [17] 朱志宏,李济泽,彭晋民,等. 微小型壁面检测爬壁机器人移动平台研究[J]. 机械工程学报,2011,47(3):49-54. ZHU Zhihong,LI Jize,PENG Jinmin,et al. Research on mobile platform of small wall-climbing robot for micro-wall inspection[J]. Journal of Mechanical Engineering,2011,47(3):49-54. [18] 吴善强,黄佩佩,武丽君. 形状记忆合金驱动的小型双足爬壁机器人[J]. 机械设计与研究,2011,27(4):28-30. WU Shanqiang,HUANG Peipei,WU Lijun. Small biped wall climbing robot driven by shape memory alloy[J]. Machine Design & Research,2011,27(4):28-30. [19] 谈士力,郭成. 微型爬壁机器人研究的关键技术[J]. 机床与液压,2005(11):21-24. TAN Shili,GUO Cheng. Key technologies of research on micro wall-climbing robot[J]. Machine Tool & Hydraulics,2005(11):21-24. [20] 向红标,李岩,巴简程,等. 磁控微型软体爬行机器人运动特性[J]. 机械工程学报,2020,56(17):39-47. XIANG Hongbiao,LI Yan,BA Jiancheng,et al. Motion characteristics of magnetic micro-software crawling robotmotion characteristics of magnetic micro-software crawling robot[J]. Journal of Mechanical Engineering,2020,56(17):39-47. [21] 张大伟. 电磁微马达驱动永磁吸附全方位微型轮式爬壁机器人[J]. 机器人,2011,33(6):712-718. ZHANG Dawei. Electromagnetic motor driven permanent magnet adsorption omni-directional miniature wheeled wall climbing robot[J]. Robot,2011,33(6):712-718. [22] 张大伟,李振波,陈佳品. 基于MEMS微型爬壁机器人自主控制系统设计[J]. 制造业自动化,2015,37(2):5-8. ZHANG Dawei,LI Zhenbo,CHEN Jiapin. Design of autonomous control system for micro wall climbing robot based on MEMS[J]. Manufacturing Automation,2015,37(2):5-8. [23] 巴简程. 基于磁-弹复合材料的磁控微型软体爬行机器人的研究[D]. 天津理工大学. BA Jiancheng. Research on magnetically controlled micro-soft crawling robot based on magnetic-elastic composite material[D]. Tianjin University of Technology. [24] 陈畅. 基于压电驱动的微型六足爬行机器人的设计与制造[D]. 上海:上海交通大学,2018. CHEN Chang. Design and manufacture of miniature hexapod crawling robot based on piezoelectric drive[D]. Shanghai:Shanghai Jiao Tong University,2018. [25] 胡冰山,吴明晖,付庄,等. 差动式形状记忆合金驱动器驱动的仿生吸盘[J]. 华中科技大学学报:自然科学版,2010,38(7):16-19. HU Bingshan,WU Minghui,FU Zhuang,et al. Bionic sucker driven by differential shape memory alloy driver[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2010,38(7):16-19. [26] KERLEY J J,MAY E,EKLUND W. The climbing crawling robot (a unique cable robot for space and Earth)[C]//Technology 2001:The Second National Technology Transfer Conference and Exposition. Washington:NASA,1991:43-50. [27] BOHME T,SCHMUCKER U,ELKMANN N,et al. Service robots for facade cleaning[C]//IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No. 98CH36200). Aachen:ASME,1998:1204-1207. [28] KANG T,KIM H,CHOI H. Realtime perception with infrared scanner for navigation of quadruped walking and climbing robot[C]//International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Sendai:RSJ,2004:2550-2555. [29] YANG W,YANG C,ZHANG R,et al. A novel worm-inspired wall climbing robot with sucker-microspine composite structure[C]//2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). Singapore:IEEE,2018:744-749. [30] XIAO J,XIAO J,XI N,et al. Fuzzy system approach for task planning and control of micro wall climbing robots[C]//IEEE International Conference on Robotics and Automation,2004. Proceedings. ICRA'04. Orleans:IEEE,2004:5033-5038. [31] XIAO J,SADEGH A,ELLIOT M,et al. Design of mobile robots with wall climbing capability[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Monterey:IEEE,2005:438-443. [32] XIAO J,XIAO J Z,XI N,et al. Fuzzy controller for wall-climbing microrobots[J]. IEEE transactions on fuzzy systems,2004,12(4):466-480. [33] ZHU H,GUAN Y,CAI C,et al. W-Climbot:A modular biped wall-climbing robot[C]//2010 IEEE International Conference on Mechatronics and Automation. Xi'an:IEEE,2010:1399-1404. [34] BERNS K,HILLENBRAND C,LUKSCH T. Climbing robots for commercial applications-a survey[C]//Proceedings of the 6th International Conference on Climbing and Walking Robots CLAWAR,Catania:SAGE,2003:17-19. [35] BERNS K,HILLENBRAND C. A climbing robot based on under pressure adhesion for the inspection of concrete walls[C]//Proceedings of the 35th International Symposium on Robotics. Paris:IFR,2004:23-26. [36] LIU J,XU L,XU J,et al. Analysis and optimization of the wall-climbing robot with an adsorption system and adhesive belts[J]. International Journal of Advanced Robotic Systems,2020,17(3):1-14. [37] RAHBEK K. Electroadhesion apparatus[P]. U.S.:Patent 2025123,1935-12-24. [38] JOHNSEN A,RAHBEK K. A physical phenomenon and its applications to telegraphy,telephony,etc[J]. Journal of the Institution of Electrical Engineers,2010,61(320):713-725. [39] GUO Y,LIU L,LIU Y,et al. Review of dielectric elastomer actuators and their applications in soft robots[J]. Advanced Intelligent Systems,2021,3(10):2000282. [40] KUMAR S,SANTHANAM V. Inkjet printed electroadhesive pads on paper[J]. International Journal of Nanotechnology,2017,14(9-11):859-866. [41] LESSING J,GLAVAN A C,WALKER S B,et al. Inkjet printing of conductive inks with high lateral resolution on omniphobic 'r~f paper' for paper-based electronics and MEMS[J]. Advanced Materials,2014,26(27):4677-4682. [42] KOH K H,SREEKUMAR M,PONNAMBALAM S G. Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot[J]. Mechatronics,2016,35:122-135. [43] WANG H,YAMAMOTO A. Analyses and solutions for the buckling of thin and flexible electrostatic inchworm climbing robots[J]. IEEE Transactions on Robotics,2017,33(4):889-900. [44] GUO J,XIANG C,ROSSITER J. A soft and shape-adaptive electroadhesive composite gripper with proprioceptive and exteroceptive capabilities[J]. Materials & Design,2018,156:586-587. [45] GERMANN J,SCHUBERT B,FLOREANO D. Stretchable electroadhesion for soft robots[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago:IEEE,2014:3933-3938. [46] DIGUMARTI K M,CAO C,GUO J,et al. Multi-directional crawling robot with soft actuators and electroadhesive grippers[C]//2018 IEEE International Conference on Soft Robotics (RoboSoft). Livorno:IEEE,2018:303-308. [47] TéLLEZ J D,KRAHN J,MENON C. Characterization of electro-adhesives for robotic applications[C]//2011 IEEE International Conference on Robotics and Biomimetics. Karon Beach:IEEE,2011:1867-1872. [48] KOH K,SREEKUMAR M,PONNAMBALAM S. Experimental investigation of the effect of the driving voltage of an electroadhesion actuator[J]. Materials,2014,7(7):4963-4981. [49] SINGH J,BINGHAM P A,PENDERS J,et al. Effects of residual charge on the performance of electro-adhesive grippers[C]//Annual Conference Towards Autonomous Robotic Systems. Cham:Springer,2016:327-338. [50] DONALD,RUFFATTO,III,et al. Increasing the adhesion force of electrostatic adhesives using optimized electrode geometry and a novel manufacturing process[J]. Journal of Electrostatics,2014,72(2):147-155. [51] GUO,TAILOR,BAMBER,et al. Investigation of relationship between interfacial electroadhesive force and surface texture[J]. Journal of Physics D:Applied Physics,2015,49(3):035303. [52] GUO J,BAMBER T,CHAMBERLAIN M,et al. Optimization and experimental verification of coplanar interdigital electroadhesives[J]. Journal of Physics D:Applied Physics,2016,49(41):415304. [53] PRAHLAD H,PELRINE R,STANFORD S,et al. Electroadhesive robots-Wall climbing robots enabled by a novel,robust,and electrically controllable adhesion technology[C]//IEEE International Conference on Robotics & Automation. Pasadena:IEEE,2008. [54] LIU R,CHEN R,SHEN H,et al. Wall climbing robot using electrostatic adhesion force generated by flexible interdigital electrodes[J]. International Journal of Advanced Robotic Systems,2013,10(36):1-9. [55] WANG H,YAMAMOTO A,HIGUCHI T. A crawler climbing robot integrating electroadhesion and electrostatic actuation[J]. International Journal of Advanced Robotic Systems,2014,11(191):1-11. [56] YAMAMOTO A,NAKASHIMA T,HIGUCHI T. Wall climbing mechanisms using electrostatic attraction generated by flexible electrodes[C]//2007 International Symposium on Micro-NanoMechatronics and Human Science. Nagoya:IEEE,2007:389-394. [57] GU G,JIANG Z,ZHAO R,et al. Soft wall-climbing robots[J]. Science Robotics,2018,3(25):eaat2874. [58] WU Q,PRADEEP V,LIU X. A paper-based wall-climbing robot enabled by electrostatic adhesion[C]//2018 IEEE International Conference on Soft Robotics (RoboSoft),Livorno:IEEE,2018:315-320. [59] CAO J,QIN L,LIU J,et al. Untethered soft robot capable of stable locomotion using soft electrostatic actuators[J]. Extreme Mechanics Letters,2018,21:9-16. [60] QIN L,LIANG X,HUANG H,et al. A versatile soft crawling robot with rapid locomotion[J]. Soft robotics,2019,6(4):455-467. [61] RUI C,RONG L,CHEN J,et al. A gecko inspired wall-climbing robot based on electrostatic adhesion mechanism[C]//IEEE International Conference on Robotics & Biomimetics. Shenzhen:IEEE,2013:396-401. [62] DE RIVAZ S D,GOLDBERG B,DOSHI N,et al. Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion[J]. Science Robotics,2018,3(25):eaau3038. [63] CAO C,SUN X,FANG Y,et al. Theoretical model and design of electroadhesive pad with interdigitated electrodes[J]. Materials & Design,2016,89:485-491. [64] XIE G,WANG W,ZHAO X,et al. Low-voltage electroadhesive pad with thin insulation layer fabricated by parylene deposition[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation,Control,and Intelligent Systems (CYBER). Suzhou:IEEE,2019:197-202. [65] ZAAF A,DAMME R V,HERREL A,et al. Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko[J]. Journal of Experimental Biology,2001,204(7):1233-1246. [66] DAVID,LABONTE,CHRISTOFER,et al. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing[J]. Proceedings of the National Academy of Sciences,2016,113(5):1297-1302. [67] ARZT E,GORB S,SPOLENAK R. From micro to nano contacts in biological attachment devices[J]. Proceedings of the National Academy of Sciences,2003,100(19):10603-10606. [68] TONY G,ELI G,JACKMAN T R,et al. Repeated origin and loss of adhesive toepads in geckos[J]. PLoS ONE,2012,7(6):e39429-. [69] AUTUMN K,LIANG Y A,HSIEH S T,et al. Adhesive force of a single gecko foot-hair[J]. Nature,2000,405(6787):681-685. [70] AUTUMN K,SITTI M,LIANG Y A,et al. Evidence for van der Waals adhesion in gecko setae[J]. Proceedings of the National Academy of Sciences,2002,991(19):12252-12256. [71] HUBER G,MANTZ H,SPOLENAK R,et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements[J]. Proceedings of the National Academy of Sciences,2005,102(45):16293-16296. [72] IZADI H,STEWART K M,PENLIDIS A. Role of contact electrification and electrostatic interactions in gecko adhesion[J]. Journal of the Royal Society Interface,2014,11(98):20140371. [73] SONG Y,WANG Z,LI Y,et al. Electrostatic attraction caused by triboelectrification in climbing geckos[J]. Friction,2022,10(1):44-53. [74] SINGLA S,JAIN D,ZOLTOWSKI C M,et al. Direct evidence of acid-base interactions in gecko adhesion[J]. Science Advances,2021,7(21):eabd9410. [75] TIAN Y,PESIKA N,ZENG H,et al. Adhesion and friction in gecko toe attachment and detachment[J]. Proceedings of the National Academy of Sciences,2006,103(51):19320-19325. [76] ZHAO B,PESIKA N,ROSENBERG K,et al. Adhesion and friction force coupling of gecko setal arrays:implications for structured adhesive surfaces[J]. Langmuir,2008,24(4):1517-1524. [77] ZENG H,PESIKA N,TIAN Y,et al. Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems[J]. Langmuir,2009,25(13):7486-7495. [78] PARNESS A,SOTO D,ESPARZA N,et al. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion,directionality and long lifetime[J]. Journal of the Royal Society Interface,2009,6(41):1223-1232. [79] SANTOS D,SPENKO M,PARNESS A,et al. Directional adhesion for climbing:Theoretical and practical considerations[J]. Journal of Adhesion Science and Technology,2007,21(12-13):1317-1341. [80] DAVIES J,HAQ S,HAWKE T,et al. A practical approach to the development of a synthetic gecko tape[J]. International Journal of Adhesion & Adhesives,2009,29(4):380-390. [81] ZHOU M,TIAN Y,SAMEOTO D,et al. Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface[J]. Acs Applied Materials & Interfaces,2013,5(20):10137-10144. [82] YI H,HWANG I,LEE J H,et al. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin[J]. Acs Applied Materials & Interfaces,2014,6(16):14590. [83] DAYAN C B,CHUN S,KRISHNA-SUBBAIAH N,et al. 3D printing of elastomeric bioinspired complex adhesive microstructures[J]. Advanced Materials,2021,33(40):2103826. [84] LIIMATAINEN V,DROTLEF D M,SON D,et al. Liquid-superrepellent bioinspired fibrillar adhesives[J]. advanced materials,2020,32(19):2000497. [85] MURPHY M P,KIM S,SITTI M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives[J]. Acs Appl Mater Interfaces,2009,1(4):849-855. [86] YURDUMAKAN B,RARAVIKAR N R,AJAYAN P M,et al. Synthetic gecko foot-hairs from multiwalled carbon nanotubes[J]. Chemical Communications,2005(30):3799-3801. [87] WIRTH C T,HOFMANN S,ROBERTSON J. Surface properties of vertically aligned carbon nanotube arrays[J]. Diamond and Related Materials,2008,17(7-10):1518-1524. [88] QU L,DAI L,STONE M,et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off[J]. Science,2008,322(5899):238-242. [89] CAMPO A D,GREINER C,ALVAREZ I,et al. Patterned surfaces with pillars with controlled 3d tip geometry mimicking bioattachment devices[J]. Advanced Materials,2010,19(15):1973-1977. [90] JEONG H E,LEE S H,KIM P,et al. High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2008,313:359-364. [91] JEONG H E,LEE S H,KIM P,et al. Stretched polymer nanohairs by nanodrawing[J]. Nano Letters,2006,6(7):1508-1513. [92] GORB S,VARENBERG M,PERESSADKO A,et al. Biomimetic mushroom-shaped fibrillar adhesive microstructure[J]. Journal of the Royal Society Interface,2007,4(13):271-275. [93] WANG D,ZHAO A,RUI J,et al. Surface properties of bionic micro-pillar arrays with various shapes of tips[J]. Applied Surface Science,2012,259:93-98. [94] GLASS P,CHUNG H,WASHBURN N R,et al. Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p(DMA-co-MEA) tip coating[J]. Langmuir the Acs Journal of Surfaces & Colloids,2010,26(22):17357. [95] KIM T I,JEONG H E,SUH K Y,et al. Stooped nanohairs:Geometry-controllable,unidirectional,reversible,and robust gecko-like dry adhesive[J]. Advanced Materials,2010,21(22):2276-2281. [96] JIN K,TIAN Y,ERICKSON J S,et al. Design and fabrication of gecko-inspired adhesives[J]. Langmuir,2012,28(13):5737-5742. [97] LEE J,FEARING R S,KOMVOPOULOS K. Directional adhesion of gecko-inspired angled microfiber arrays[J]. Applied Physics Letters,2008,93(19):191910. [98] CHAN E P,SMITH E J,HAYWARD R C,et al. Surface wrinkles for smart adhesion[J]. Advanced Materials,2008,20(4):711-716. [99] YU J,CHARY S,DAS S,et al. Gecko-inspired dry adhesive for robotic applications[J]. Advanced Functional Materials,2011,21(16):3010-3018. [100] JEONG H E,LEE J K,HONG N K,et al. A nontransferring dry adhesive with hierarchical polymer nanohairs[J]. Proceedings of the National Academy of Sciences,2009,106(14):5639-5644. [101] YANG S Y,CARLSON A,CHENG H,et al. Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll- to-roll applications[J]. Advanced Materials,2012,24(16):2117-2122. [102] UNVER O,SITTI M. Tankbot:A palm-size,tank-like climbing robot using soft elastomer adhesive treads[J]. International Journal of Robotics Research,2010,29(14):1761-1777. [103] MURPHY M P,SITTI M. Waalbot:An agile small-scale wall-climbing robot utilizing dry elastomer adhesives[J]. IEEE/ASME Transactions on Mechatronics,2007,12(3):330-338. [104] MURPHY M P,KUTE C,MENGUEC Y,et al. Waalbot II:Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives[J]. International Journal of Robotics Research,2011,30(1):118-133. [105] HAWKES E W,CHRISTENSEN D L,CUTKOSKY M R. Vertical dry adhesive climbing with a 100x bodyweight payload[C]//Proceedings-IEEE International Conference on Robotics and Automation. Seattle:IEEE,2015:3762-3769. [106] WU Y,DONG X,KIM J K,et al. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces[J]. Science Advances,2022,8(21):eabn3431. [107] KIM S,SPENKO M. Smooth vertical surface climbing with directional adhesion[J]. IEEE Transactions on robotics,2008,24(1):65-74. [108] MENON C,LI Y,SAMEOTO D,et al. Abigaille-I:Towards the development of a spider-inspired climbing robot for space use[C]//2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Scottsdale:IEEE,2008:384-389. [109] LI Y,AHMED A,DAN S,et al. Abigaille II:Toward the development of a spider-inspired climbing robot[J]. Robotica,2012,30(1):79-89. [110] TRAMACERE F,BECCAI L,KUBA M,et al. The morphology and adhesion mechanism of octopus vulgaris suckers[J]. PLoS One,2013,8(6):e65074. [111] SAREH S,ALTHOEFER K,LI M,et al. Anchoring like octopus:Biologically inspired soft artificial sucker[J]. Journal of the royal society interface,2017,14(135):20170395. [112] ZHANG L,CHEN H,GUO Y,et al. Micro-nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs[J]. Advanced Science,2020,7(20):2001125. [113] HANNA G,JON W,BARNES W J. Adhesion and detachment of the toe pads of tree frogs[J]. Journal of Experimental Biology,1991,155(1):103-125. [114] BARNES W J P. Functional morphology and design constraints of smooth adhesive pads[J]. MRS bulletin,2007,32(6):479-485. [115] CHEN Y,MENG J,GU Z,et al. Bioinspired multiscale wet adhesive surfaces:Structures and controlled adhesion[J]. Advanced Functional Materials,2020,30(5):1905287. [116] LEE S H,SONG H W,KANG B S,et al. Remora-inspired reversible adhesive for underwater applications[J]. ACS Applied Materials & Interfaces,2019,11(50):47571-47576. [117] DITSCHE P,WAINWRIGHT D K,SUMMERS A P. Attachment to challenging substrates-fouling,roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus)[J]. Journal of Experimental Biology,2014,217(14):2548-2554. [118] WAINWRIGHT D K,KLEINTEICH T,KLEINTEICH A,et al. Stick tight:Suction adhesion on irregular surfaces in the northern clingfish[J]. Biology letters,2013,9(3):20130234. [119] SANGYUL,BAIK,DA,et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J]. Nature,2017,546(7658):396-400. [120] ZHAO Y,WU Y,WANG L,et al. Bio-inspired reversible underwater adhesive[J]. Nature communications,2017,8(1):1-8. [121] OH,JU,HYUN,et al. Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive[J]. Acs Applied Materials & Interfaces,2018,10(8):7263-7270. [122] MIN H,JANG S,DA W K,et al. Highly air/water-permeable hierarchical mesh architectures for stretchable underwater electronic skin patches[J]. ACS applied materials & interfaces,2020,12(12):14425-14432. [123] BAIK S,HWANG G W,JANG S,et al. Bioinspired microsphere-embedded adhesive architectures for an electrothermally actuating transport device of dry/wet pliable surfaces[J]. ACS Applied Materials & Interfaces,2021,13(5):6930-6940. [124] BAIK S,LEE H J,DA W K,et al. Capillarity-enhanced organ-attachable adhesive with highly drainable wrinkled octopus-inspired architectures[J]. ACS Applied Materials & Interfaces,2019,11(29):25674-25681. [125] WANG Y,YANG X,CHEN Y,et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish[J]. Science Robotics,2017,2(10):eaan8072. [126] MAZZOLAI B,MONDINI A,TRAMACERE F,et al. Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments[J]. Advanced Intelligent Systems,2019,1(6):1900041. [127] ZHUO S,ZHAO Z,XIE Z,et al. Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines[J]. Science advances,2020,6(5):eaax1464. [128] DITSCHE P,SUMMERS A P. Aquatic versus terrestrial attachment:Water makes a difference[J]. Beilstein Journal of Nanotechnology,2014,5(1):2424-2439. [129] LABONTE D,FEDERLE W. Rate-dependence of 'wet' biological adhesives and the function of the pad secretion in insects[J]. Soft Matter,2015,11(44):8661-8673. [130] ARMADA M,DE SANTOS P G. Climbing,walking and intervention robots[J]. Industrial Robot:An International Journal,1997,24(2):158-163. [131] JAFFERIS N T,SMITH M J,WOOD R J. Design and manufacturing rules for maximizing the performance of polycrystalline piezoelectric bending actuators[J]. Smart Materials and Structures,2015,24(6):065023. [132] WU Y,YIM J K,LIANG J,et al. Insect-scale fast moving and ultrarobust soft robot[J]. Science Robotics,2019,4(32):eaax1594. [133] LV J A,LIU Y,WEI J,et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature,2016,537(7619):179-184. [134] MISKIN M Z,CORTESE A J,DORSEY K,et al. Electronically integrated,mass-manufactured,microscopic robots[J]. Nature,2020,584(7822):557-561. [135] SEOK S,ONAL C D,CHO K-J,et al. Meshworm:a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics,2012,18(5):1485-1497. [136] LU H,ZHANG M,YANG Y,et al. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions[J]. Nature Communications,2018,9(1):1-7. [137] JIA T,WANG Y,DOU Y,et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles[J]. Advanced Functional Materials,2019,29(18):1808241. [138] WEHNER M,TRUBY R L,FITZGERALD D J,et al. An integrated design and fabrication strategy for entirely soft,autonomous robots[J]. Nature,2016,536(7617):451-455. [139] TRUBY R L,WEHNER M,GROSSKOPF A K,et al. Soft somatosensitive actuators via embedded 3D printing[J]. Advanced Materials,2018,30(15):1706383. [140] LI S,VOGT D M,RUS D,et al. Fluid-driven origami-inspired artificial muscles[J]. Proceedings of the National Academy of Sciences,2017,114(50):13132-13137. [141] RUFFATTO III D,PARNESS A,SPENKO M. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive[J]. Journal of The Royal Society Interface,2014,11(93):20131089. [142] GRECO G,BOSIA F,TRAMACERE F,et al. The role of hairs in the adhesion of octopus suckers:A hierarchical peeling approach[J]. Bioinspiration & Biomimetics,2020,15(3):035006. [143] TRAMACERE F,APPEL E,MAZZOLAI B,et al. Hairy suckers:the surface microstructure and its possible functional significance in the Octopus vulgaris sucker[J]. Beilstein Journal of Nanotechnology,2014,5(1):561-565. [144] ZOU F. Review of aero-engine defect detection technology[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). Chongqing:IEEE,2020:1524-1527. [145] YU H. Borescope and its application in the maintenance of aeroengine[J]. Aeronautical Manufacturing Technology,2005,35(6):94-97. [146] BOETTNER B,BROWNELL L. Rolls-royce and swarm Robots[EB/OL].(2018-07-18)[2022-06-07]. https://wyss.harvard.edu/media-post/rolls-royce-and-swarm-robots/. |
[1] | 张小俊, 吴亚淇, 刘昊学, 钟道方. 轮足式磁吸附越障爬壁机器人设计与分析[J]. 机械工程学报, 2024, 60(1): 248-261. |
[2] | 陈咏华, 孙振国, 张文, 陈强. 爬壁机器人焊缝高效修形技术研究[J]. 机械工程学报, 2023, 59(9): 12-19. |
[3] | 张文, 丁雨林, 陈咏华, 孙振国. 圆柱形钢制构件表面爬壁机器人姿态估计方法[J]. 机械工程学报, 2022, 58(5): 1-7. |
[4] | 王洋, 张小俊, 张明路, 孙凌宇. 可自适应变曲率立面的分体柔性爬壁机器人设计与分析[J]. 机械工程学报, 2021, 57(3): 49-58. |
[5] | 郭震, 张理, 周伟, 毕贵军, 韩冰. 立向高速GMAW驼峰焊缝的试验研究[J]. 机械工程学报, 2020, 56(14): 73-80. |
[6] | 过金超, 崔光照, 陈旭, 高瑜. 面向爬壁机器人的电极吸附阵列模型构建及优化[J]. 机械工程学报, 2015, 51(9): 51-57. |
[7] | 俞志伟;李宏凯;张晓峰;张昊;戴振东. 仿壁虎脚趾结构设计及粘附运动性能测试[J]. , 2011, 47(21): 7-13. |
[8] | 薛胜雄;任启乐;陈正文;王永强. 磁隙式爬壁机器人的研制[J]. , 2011, 47(21): 37-42. |
[9] | 孟偲;王田苗;丑武胜;官胜国;裴葆青. 仿壁虎机器人的步态设计与路径规划[J]. , 2010, 46(9): 32-37. |
[10] | 衣正尧;弓永军;王祖温;王兴如. 新型船舶壁面除锈爬壁机器人动力学建模与分析[J]. , 2010, 46(15): 23-30. |
[11] | 姜勇;王洪光;房立金. 基于主动试探的微小型爬壁机器人步态控制[J]. , 2009, 45(7): 56-62. |
[12] | 桂仲成;陈强;孙振国. 多体柔性永磁吸附爬壁机器人[J]. , 2008, 44(6): 177-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||