[1] 严隽耄,傅茂海. 车辆工程[M]. 3版. 北京:中国铁道出版社, 2008:240-272. YAN Junmao, FU Maohai. Vehicle engineering[M]. 3rd ed. Beijing:China Railway Publishing House, 2008:240-272. [2] 邱宣怀. 机械设计[M]. 4版. 北京:高等教育出版社, 2007:204-256. QIU Xuanhuai. Machine design[M]. 4th ed. Beijing:Higher Education Press, 2007:204-256. [3] 石莹,姚玉鹏,李宝良. 机车牵引齿轮材料摩擦磨损性能试验研究[J]. 润滑与密封, 2014, 39(11):69-72. SHI Ying, YAO Yupeng, LI Baoliang. Test research on friction and wear properties of locomotive traction gear materials[J]. Lubrication Engineering, 2014, 39(11):69-72. [4] CHEN Kangkang, MA Hui, CHE Linyang, et al. Comparison of meshing characteristics of helical gears with spalling fault using analytical and finite-element methods[J]. Mechanical Systems and Signal Processing, 2019, 121:279-298. [5] 吴胜利,邵毅敏,邢文婷,等. 齿轮剥落故障特征识别方法研究[J]. 机械传动, 2019, 43(8):116-119. WU Shengli, SHAO Yimin, XING Wenting, et al. Study on the identification method of gear spalling fault[J]. Journal of Mechanical Transmission, 2019, 43(8):116-119. [6] 古代辉. 基于斜齿轮的重合度和单位接触线载荷研究[J]. 内燃机与配件, 2020(16):26-27. GU Daihui. Research on coincidence degree and unit contact line load based on helical gear[J]. Internal Combustion Engine & Parts, 2020(16):26-27. [7] 方宗德. 修形斜齿轮的承载接触分析[J]. 航空动力学报, 1997, 12(3):251-254. FANG Zongde. Loaded tooth contact analysis of dified helical gears[J]. Journal of Aerospace Power, 1997, 12(3):251-254. [8] 卜忠红,刘更,吴立言,等. 基于线性规划法的齿轮啮合刚度与载荷分布计算的改进方法[J]. 机械科学与技术, 2008, 27(11):1365-1368. BU Zhonghong, LIU Geng, WU Liyan, et al. A modified method for determining the mesh stiffness and load distribution of a cylinder gear based on linear programming[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(11):1365-1368. [9] 陆凤霞,陈文炜,刘伟平,等. 斜齿轮轮齿接触有限元分析的新方法研究[J]. 机械传动, 2018, 42(7):44-49. LU Fengxia, CHEN Wenwei, LIU Weiping, et al. Study on the new method of finite element analysis of helical gear contact[J]. Journal of Mechanical Transmission, 2018, 42(7):44-49. [10] PEDRERO J I, PLEGUEZUELOS M, ARTEX M, et al. Load distribution model along the line of contact for involute external gears[J]. Mechanism and Machine Theory, 2010, 45(5):780-794. [11] MARQUES P, MARTINS R C, SEABRA J. Power loss and load distribution models including frictional effects for spur and helical gears[J]. Mechanism and Machine Theory, 2016, 96:1-25. [12] WU Shifeng, CHENG H S. A sliding wear model for partial-EHL contacts[J]. Journal of Tribology, 1991, 113(1):134-141. [13] WU Shifeng, CHENG H S. Sliding wear calculation in spur gears[J]. Journal of Tribology, 1993, 115(3):493-500. [14] AKBARZADEH S, KHONSARI M M. Prediction of steady state adhesive wear in spur gears using the EHL load sharing concept[J]. Journal of Tribology, 2009, 131(2):024503. [15] SUDHAGAR S, RAO L B. Analytical and experimental studies on wear in spur gear running in dry condition[J]. Journal of Tribology, 2022, 144(2):021703. [16] ZHOU Changjiang, WANG Hongbing. An adhesive wear prediction method for double helical gears based on enhanced coordinate transformation and generalized sliding distance model[J]. Mechanism and Machine Theory, 2018, 128:58-83. [17] LI G, WANG Z H, ZHU W D. Prediction of surface wear of involute gears based on a modified fractal method[J]. Journal of Tribology, 2019, 141(3):031603. [18] BAJPAI P, KAHRAMAN A, ANDERSON N E. A surface wear prediction methodology for parallel-axis gear pairs[J]. Journal of Tribology, 2004, 126(3):597-605. [19] WANG Hongbing, ZHOU Changjiang, Lei Yuying, et al. An adhesive wear model for helical gears in line-contact mixed elastohydrodynamic lubrication[J]. Wear, 2019, 426:896-909. [20] 张建阁,刘少军,方特. 混合润滑下齿面磨损预测研究及试验验证[J]. 华南理工大学学报(自然科学版), 2018, 46(2):22-30. ZHANG Jiange, LIU Shaojun, FANG Te. Prediction of gear wear rate in mixed lubrication and experimental verification[J]. Journal of South China University of Technology(Natural Science Edition), 2018, 46(2):22-30. [21] XU H, KAHRAMAN A, ANDERSON N E, et al. Prediction of mechanical efficiency of parallel-axis gear pairs[J]. Journal of Mechanical Design, 2007, 129(1):58-68. [22] 么超凡,于子良,齐洪峰,等. 间隙配合变轨距轮对与轨道间瞬态滚滑接触模拟研究[J]. 机械工程学报, 2020, 56(24):115-124. YAO Chaofan, YU Ziliang, QI Hongfeng, et al. Transient simulations of gauge-adjustable wheelset-rail rolling-sliding contact in consideration of the clearance fit[J]. Journal of Mechanical Engineering, 2020, 56(24):115-124. [23] ZHAO X. Dynamic wheel/rail rolling contact at singular defects with application to squats[D]. Delft:Delft University of Technology, 2012. [24] ZHAO Xin, LI Zili. A solution of transient rolling contact with velocity dependent friction by the explicit finite element method[J]. Engineering Computations:International Journal for Computer-aided Engineering and Software, 2016, 33(4):1033-1050. [25] MASJEDI M, KHONSARI M M. An engineering approach for rapid evaluation of traction coefficient and wear in mixed EHL[J]. Tribology International, 2015, 92:184-190. [26] ROWE C N. Some aspects of the heat of adsorption in the function of a boundary lubricant[J]. Tribology Transactions, 1966, 9(1):101-111. [27] ZHOU Changjiang, XING Mingcai, HU Bo, et al. A modified wear model considering contact temperature for spur gears in mixed elastohydrodynamic lubrication[J]. Tribology Letters, 2020, 68(4):1-17. |