• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (4): 101-108.doi: 10.3901/JME.2018.04.101

• 轮轨接触关系 • 上一篇    下一篇



寇峻瑜1, 王衡禹1, 赵鑫1, 赵国堂2, 金学松1   

  1. 1. 西南交通大学牵引动力国家重点实验室 成都 610031;
    2. 中国铁路总公司 北京 100844
  • 收稿日期:2017-05-02 修回日期:2017-12-28 出版日期:2018-02-20 发布日期:2018-02-20
  • 通讯作者: 赵鑫(通信作者),男,1981年出生,博士,副研究员,硕士研究生导师。主要研究方向为轮轨滚动接触行为及轮轨损伤。E-mail:xinzhao@home.swjtu.edu.cn
  • 作者简介:寇峻瑜,男,1992年出生。主要研究方向为轮轨滚动接触力学及损伤。E-mail:koujunyu312@163com
  • 基金资助:

Influence of Rail Decarburization Layer on Wheel-rail Transient Rolling Contact Behavior

KOU Junyu1, WANG Hengyu1, ZHAO Xin1, ZHAO Guotang2, JIN Xuesong1   

  1. 1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031;
    2. China Railway Corporation, Beijing 100844
  • Received:2017-05-02 Revised:2017-12-28 Online:2018-02-20 Published:2018-02-20

摘要: 采用显式有限元法建立考虑钢轨脱碳层的三维轮轨瞬态滚动接触模型,将轮轨真实三维几何、材料非线性和车辆-轨道高频动力作用充分考虑在内,采用"面-面"接触算法于时域内重现了车轮在带脱碳层钢轨上的瞬态滚动接触行为,得到了随时间变化的法、切向接触解。对比发现,屈服应力较低的脱碳层会增大钢轨表层的塑性变形,使得轮轨接触斑和黏着区增大,而最大法、切向接触应力和摩擦功相应降低;厚度有限(一般小于1 mm)的脱碳层对接触斑形状与尺寸的影响可忽略,但对接触应力、黏滑分布和摩擦功的影响不可忽略。脱碳层增厚会加大表面数层单元的总塑性变形,但第一层单元的塑性变形会因变形的再分布而稍稍变小。脱碳层的纵向不连续会使轮轨力、接触应力均在边界上呈现重要变化,车轮由带实测脱碳层钢轨滚入无脱碳层钢轨时,法、切向轮轨力会出现幅值分别为0.32和1.14 kN的动态力,相应的最大法、切向接触应力和摩擦功较脱碳层钢轨上的稳态值分别增加4.42%、19.71%和83.19%。某些条件下,这些突变或可引发不均匀磨耗,进而导致原本平顺的轨面上出现几何不平顺。

关键词: 钢轨脱碳层, 瞬态滚动接触, 显式有限元法, 黏滑分布, 塑型变形

Abstract: A 3D wheel-rail transient rolling contact model has been developed in consideration of rail decarburization layers using the explicit finite element method. The actual 3D geometry of wheel and rail, material nonlinearity and high-frequency dynamic interactions between vehicle and track are all taken into account. A penalty method based surface-to-surface contact algorithm is implemented to solve the transient wheel-rail rolling contact in the time domain, with which the normal and tangent contact solutions are obtained for any instants. Through comparison it is found that the existence of decarburization layer would increase the plastic deformation, resulting in larger contact patch and adhesion area, smaller normal and tangential contact stresses and lower frictional work. Due to the limited depth of the decarburization layer, being typically less than 1 mm, its influence on the shape and size of the contact patch is negligible, while those on contact stresses, adhension-slip distinction and frictional work are noticeable. A thicker decarburization layer could increase the plastic deformation of top layers of elements, while the plastic deformation of the first layer of element is lowered because of the redistribution of plastic deformation among the top layers. For longitudinally intermittent decarburization layers, the wheel-rail contact force and contact stresses all show noticeable variations at the boundaries between the decarburized and parent sections. Taking the running from a decarburized section to a parent one as an example, in which parameters of decarburization layer measured from an actual rail are used, the excited dynamic wheel-rail forces are 0.32 and 1.14 kN in the vertical and longitudinal directions, respectively, and the normal and tangential contact stresses and the frictional work are 4.42%, 19.71% and 83.19% larger than their stable values on the decarburized section. Such variations at boundary may cause uneven wear leading to geometry irregularities on the original smooth surface under certain conditions.

Key words: rail decarburization layer, transient rolling contact, explicit finite element method, adhesion-slip distinction, plastic deformation