[1] 李渊博,李霄,王世清,等. 片状偏钨极电弧特性的数值模拟[J]. 焊接学报, 2017, 38(4):7-12. LI Yuanbo, LI Xiao, WANG Shiqing, et al. Numerical simulation of arc in sheet slanting electrode tungsten insert gas welding[J]. Transactions of the China Welding Institution, 2017, 38(4):7-12. [2] 李渊博,杨涛,郑韶先,等. 超窄间隙焊接过程绝缘固壁约束片状偏钨极电弧特性的数值模拟[J]. 机械工程学报, 2020, 56(2):69-76. LI Yuanbo, YANG Tao, ZHENG Shaoxian, et al. Numerical simulation of constricted sheet tungsten electrode arc characteristic with insulating solid wall in ultra narrow gap welding process[J]. Journal of Mechanical Engineering, 2020, 56(2):69-76. [3] 郑韶先,杜宝峰,韩峰,等. 1Cr18Ni9Ti不锈钢超窄间隙焊接接头组织与性能分析[J]. 稀有金属材料与工程, 2015, 44(10):2454-2458. ZHENG Shaoxian, DU Baofeng, HAN Feng, et al. Microstructure and mechanical property of ultra-narrowgap welding joint of 1Cr18Ni9Ti stainless steel[J]. Rare Metal Materials and Engineering, 2015, 44(10):2454-2458. [4] ENGELHARD G, HABIP L M, PELLKOFER D, et al. Optimization of residual welding stresses in austenitic steel piping:Prooftesting and numerical simulation of welding and postwelding processes[J]. Nuclear Engineering & Design, 2000, 198(1):141-151. [5] TSENG K H, CHOU C P. The effect of pulsed GTA welding on the residual stress of a stainless steel weldment[J]. Journal of Materials Processing Technology, 2002, 123(3):346-353. [6] YELAMASETTI B, RAJYALAKSHMI G. Effect of TIG, pulsed TIG and interpulse TIG welding techniques on weld strength of dissimilar joints between Monel 400 and AISI 316[J]. Materials Today:Proceedings, 2019, 19(2):755-760. [7] 郑炜. 脉冲TIG焊接熔池流场与热场动态过程的数值模拟[J]. 焊接学报, 1997, 18(4):227-231. ZHENG Wei. Numerical simulation for transient behavior of fluid flow and heat transfer in pulsed current TIG weld pool[J]. Transactions of the China Welding Institution, 1997, 18(4):227-231. [8] KUMAR K, KUMAR C, MASANTA M, et al. A review on TIG welding technology variants and its effect on weld geometry[J]. Materials Today:Proceedings, 2021, 24(12):1-6. [9] RAMKUMAR K D, CHANDRASEKHAR A, SRIVASTAVA A, et al. Effects of filler metals on the segregation, mechanical properties and hot corrosion behaviour of pulsed current gas tungsten arc welded super-austenitic stainless steel[J]. Journal of Manufacturig Processes, 2016, 24(7):46-61. [10] DEV S, RAMKUMAR K D, ARIVAZHAGAN N, et al. Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416[J]. Journal of Manufacturing Processes, 2018, 32(6):685-698. [11] HARINADH V, EDISON G, AKELLA S, et al. Multipass welding on inconel material with pulsed current gas tungsten arc welding[J]. Materials Today Proceedings, 2017, 4(2):1452-1458. [12] AVINASH S, BALRAM Y, BABU B S, et al. Multi-response optimization of pulse TIG welding process parameters of welds AISI 304 and Monel 400 using grey relational analysis[J]. Engineering Science and Technology, 2016, 19(2):811-817. [13] LI Yuanbo, YE Tao, ZHENG Wenxing, et al. The differential analysis for temperature distribution diagnostics of arc current-carrying region in sheet slanting tungsten electrode inert gas welding with the electrostaticprobe[J]. High Temperature Materials and Processes, 2021, 40(1):410-420. [14] 杨涛. 绝缘固壁约束超窄间隙TIG焊接电弧特性的数值模拟[D]. 西安:西安石油大学, 2019. YANG Tao. Numerical simulation of constricted TIG arc by insulating solid wall in ultra-narrow-gap welding[D]. Xi'an:Xi'an Shiyou University, 2019. [15] 程世佳,朱志明,符平坡. 基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J]. 清华大学学报(自然科学版), 2019, 25(35):1-8. CHENG Shijia, ZHU Zhiming, FU Pinpo. Arc shape variations and characteristic temperatures of pulsed TIG welding arcs based on observed arc images[J]. J. Tsinghua Univ.(Sci & Technol), 2019, 25(35):1-8. [16] CUNHA T V D, VOIGT A L, BOHÓRQUEZ C E N, et al. Analysis of mean and RMS current welding in the pulsed TIG welding process[J]. Journal of Materials Processing Technology, 2016, 231(5):449-455. [17] 胡绳荪. 现代弧焊电源及其控制[M]. 北京:机械工业出版社, 2015. HU Shengsun. Modern arc welding power supply and control[M]. Beijing:China Machine Press, 2015. |