[1] 田大可,范小东,郑夕健,等. 空间可展开天线微重力环境模拟研究现状与展望[J]. 机械工程学报, 2021, 57(3):11-25. TIAN Dake, FAN Xiaodong, ZHENG Xijian, et al. Research status and prospect of micro-gravity environment simulation for space deployable antenna[J]. Journal of Mechanical Engineering, 2021, 57(3):11-25. [2] 刘荣强,史创,郭宏伟,等. 空间可展开天线机构研究与展望[J]. 机械工程学报, 2020, 56(5):1-12. LIU Rongqiang, SHI Chuang, GUO Hongwei, et al. Review of space deployable antenna mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(5):1-12. [3] ZHAO P, LIU J, WU C, et al. Novel surface design of deployable reflector antenna based on polar scissor structures[J]. Chinese Journal of Mechanical Engineering, 2020, 33:68. [4] MA X, LI T, MA J, et al. Recent advances in space-deployable structures in China[J]. Engineering, 2022, 4(21):1-13. [5] PENG Q, WANG S, ZHI C, et al. A new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements[J]. Chinese Journal of Mechanical Engineering, 2019, 32(5):117-126. [6] 陈聪聪,李团结,唐雅琼. 网状反射面天线原理误差计算方法[J]. 机械工程学报, 2022, 58(7):176-182. CHEN Congcong, LI Tuanjie, TANG Yaqiong. Faceting deviation calculation of cable-net reflector antenna[J]. Journal of Mechanical Engineering, 2022, 58(7):176-182. [7] 邱慧,刘志全,曾惠忠,等. 航天器可展SAR天线结构综述[J]. 宇航学报, 2021, 42(10):1197-1206. QIU Hui, LIU Zhiquan, ZENG Huizhong, et al. Review of deployable SAR antenna structures of spacecraft[J]. Journal of Astronautics, 2021, 42(10):1197-1206. [8] 陈传志,董家宇,陈金宝,等. 空间大型星载抛物面天线研究进展与展望[J]. 航空学报, 2020, 42(1):133-153. CHEN Chuanzhi, DONG Jiayu, CHEN Jinbao, et al. Research progress and prospect of large spaceborne parabolic antenna[J]. Acta Aeronautica et Astronautica Sinica, 2020, 42(1):133-153. [9] HAN B, XU Y, YAO J, et al. Design and analysis of a scissors double-ring truss deployable mechanism for space antennas[J]. Aerospace Science and Technology, 2019, 93:105357. [10] 冯涛,冀有志,肖勇,等. 星载环形天线结构及其应用综述[J]. 空间电子技术, 2015, 12(2):22-28. FENG Tao, JI Youzhi, XIAO Yong, et al. Overview of space-borne perimeter truss antenna and its application[J]. Space Electronic Technology, 2015, 12(2):22-28. [11] SHI C, GUO H, CHENG Y, et al. Design and multi-objective comprehensive optimization of cable-strut tensioned antenna mechanism[J]. Acta Astronautica, 2021, 178:406-422. [12] DATASHVILI L, ENDLER S, WEI B, et al. Study of mechanical architectures of large deployable space antenna apertures:from design to tests[J]. CEAS Space Journal, 2013, 5:169-184. [13] 吴新燕,关富玲. 双圈六面体环形桁架式可展开天线结构设计[J]. 机械工程学报, 2020, 56(5):218-225. WU Xinyan, GUAN Fuling. Design of deployable antenna of double-loop hexahedron truss[J]. Journal of Mechanical Engineering, 2020, 56(5):218-225. [14] DAI L, GUAN F, GUEST J K. Structural optimization and model fabrication of a double-ring deployable antenna truss[J]. Acta Astronautica, 2014, 94(2):843-851. [15] SUN Z, YANG D, DUAN B, et al. Structural design, dynamic analysis, and verification test of a novel double-ring deployable truss for mesh antennas[J]. Mechanism and Machine Theory, 2021, 165:104416. [16] CAO W, XI S, DING H, et al. Design and kinematics of a novel double-ring truss deployable antenna mechanism[J]. Journal of Mechanical Design, 2021, 143(12):124502. [17] MENG Q, LIU X, XIE F. Structure design and kinematic analysis of a class of ring truss deployable mechanisms for satellite antennas based on novel basic units[J]. Mechanism and Machine Theory, 2022, 174:104881. [18] CHEN Y, YOU Z. Square deployable frames for space applications. Part 1:Theory[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2006, 220(4):347-354. [19] LU S, ZLATANOV D, DING X. Approximation of cylindrical surfaces with deployable Bennett networks[J]. Journal of Mechanisms and Robotics, 2017, 9(2):021001. [20] ZHANG X, NIE R, CHEN Y, et al. Deployable structures:structural design and static/dynamic analysis[J]. Journal of Elasticity, 2021, 146:199-235. [21] WALDRON K J. Overconstrained linkages[J]. Environment and Planning B, 1979, 6(4):393-402. [22] CHEN Y, YOU Z, TARNAI T. Threefold-symmetric Bricard linkages for deployable structures[J]. International Journal of Solids and Structures, 2005, 42(8):2287-2301. [23] CHEN Y, YOU Z. An extended Myard linkage and its derived 6R linkage[J]. Journal of Mechanical Design, 2008, 130(5):052301. [24] BAKER J E. The Bennett, Goldberg and Myard linkages-in perspective[J]. Machanism and Machine Theory, 1979, 14(4):239-253. [25] BAKER J E. A comparative survey of the Bennett-based, 6-revolute kinematic loops[J]. Mechanism and Machine Theory, 1993, 28(1):83-96. [26] BAKER J E. An analysis of the Bricard linkages[J]. Mechanism and Machine Theory, 1980, 15(4):267-286. [27] CHAI X, KANG X, GAN D, et al. Six novel 6R metamorphic mechanisms induced from three-series-connected Bennett linkages that vary among classical linkages[J]. Mechanism and Machine Theory, 2021, 156:104133. [28] YANG F, YOU Z, CHEN Y. Mobile assembly of two Bennett linkages and its application to transformation between cuboctahedron and octahedron[J]. Mechanism and Machine Theory, 2020, 145:103698. [29] LIU S, CHEN Y. Myard linkage and its mobile assemblies[J]. Mechanism and Machine Theory, 2009, 44(10):1950-1963. [30] QI X, DENG Z, LI B, et al. Design and optimization of large deployable mechanism constructed by Myard linkages[J]. CEAS Space Journal, 2013, 5(3-4):147-155. [31] LU S, ZLATANOV D, DING X, et al. A network of type III Bricard linkages[J]. Journal of Mechanisms and Robotics, 2019, 11(1):011013. [32] DING H, ZHANG D, CAO W. A novel two-layer and two-loop deployable linkage with accurate vertical straight-line motion[J]. Journal of Mechanical Design, 2020, 142(10):103301. [33] CHENG P, DING H, CAO W, et al. A novel family of umbrella-shaped deployable mechanisms constructed by multi-layer and multi-loop spatial linkage units[J]. Mechanism and Machine Theory, 2021, 161:104169. [34] LYU S, YAO P, XIAO H, et al. Approximating cylinders with bundle-folding plane-symmetric Bricard linkages[J]. International Journal of Mechanical Sciences, 2022, 221:107231. [35] MURRAY R M, LI Z, SASTRY S S. A mathematical introduction to robotic manipulation[M]. Boca Raton:CRC Press, 1994. |