• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (13): 149-155.doi: 10.3901/JME.2020.13.149

• 机构学与机器人 • 上一篇    下一篇

扫码分享

气浮悬吊式太阳翼重力补偿装置的设计与验证

吴跃民1, 罗强1, 王晛1, 刘颖1, 孙建辉2   

  1. 1. 中国空间技术研究院总体部 北京 100094;
    2. 浙江工业大学机械工程学院 杭州 310032
  • 收稿日期:2019-10-15 修回日期:2020-05-20 出版日期:2020-07-05 发布日期:2020-08-01
  • 通讯作者: 朱建阳(通信作者),男,1981年出生,博士,副教授,硕士研究生导师。主要研究方向为仿生机器人,机器人运动及动力学研究等。E-mail:zhujy@wust.edu.cn
  • 作者简介:蒋林,男,1976年出生,博士,教授,硕士研究生导师。主要研究方向为室内移动机器人地图构建、定位、导航及液压机器人。E-mail:jianglin76@wust.edu.cn;李峻,男,1997年出生,硕士研究生。主要研究方向为室内移动机器人地图构建、导航。E-mail:lijun_mce@163.com;马先重,男,1995年出生,硕士研究生。主要研究方向为室内移动机器人激光建图、激光视觉融合。E-mail:1058088476@qq.com;聂文康,男,1996年出生,硕士研究生。主要研究方向为室内移动机器人物体识别、语义地图构建。E-mail:1797537258@qq.com;雷斌,男,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为群体机器人,编队控制,一致性方法。E-mail:leibin@wust.edu.cn
  • 基金资助:
    国家重大科技专项资助项目。

Design and Verification of Air-floating Suspension Gravity Compensation Device for Solar Wing

WU Yuemin1, LUO Qiang1, WANG Xian1, LIU Ying1, SUN Jianhui2   

  1. 1. Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094;
    2. Institute of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032
  • Received:2019-10-15 Revised:2020-05-20 Online:2020-07-05 Published:2020-08-01

摘要: 针对滚轮滑车悬吊式重力补偿装置运行阻力大、气浮支撑式补偿装置无法满足机构向气浮平台方向运动的问题,提出了基于龙门架式支撑结构与横、纵双向气浮导轨相结合的悬吊式重力补偿装置设计方案。采用多段拼接技术解决了超长纵向导轨生产与装调难题;采用在纵向导轨拼缝两侧增设节流孔的方法,提升了纵向滑车在拼缝处的运行平稳性;在纵向导轨上采用倒"V"形工作表面,解决了因外力未通过质心可能引起横向导轨运行偏转的问题;采用挤压成型中空铝型材与碳纤维增强梁相结合的方法实现了大跨距横向导轨的减重与抗弯刚度的提升。经分析与试验验证,在单个悬吊点处悬挂90 kg负载,该装置最大运行阻力系数不超过0.037%,运行范围可达2 m×20 m,在速度不超过1 m/s,加速度不超过0.3 m/s2的使用条件下,具有良好的动态跟随能力,可满足太阳翼、天线等大型空间可展开机构地面展开试验与性能测试的需求。

关键词: 气浮滑车, 重力补偿, 悬吊系统, 可展开机构, 地面展开试验

Abstract: Aiming at the problem that the running resistance of the wheeled trolley suspension gravity compensation device is large and the air-floating support compensation device cannot meet the requirement of the mechanism deploy against the air-floating platform, a suspension gravity compensation device composed of the gantry-type support structure and the transverse and longitudinal two-way air-floating guides is proposed. The multi-segment splicing technology is used to solve the problem of production and adjustment of super long longitudinal guide rails; the method of adding throttle holes on both sides of the longitudinal guide joints is adopted to improve the running stability of the longitudinal air-floating trolley at the joints; The inverted "V" shaped working surface solves the problem of transverse rail running deflection caused by the external force not passing through the centroid; the combination of the extruded hollow aluminum profile and the carbon fiber reinforced beam realizes the weight reduction and bending stiffness increase of the large span transverse guide rail. After analysis and test verification, in case of hanging a 90 kg load at a single suspension point, the maximum running resistance coefficient of the device is not more than 0.037%, the operating range is up to 2 m×20 m. In case of a follow speed not more than 1 m/s and the acceleration is less than 0.3 m/s2, the device has good dynamic following ability, which can meet the requirements of ground deployment test and performance test of large space deployable mechanisms such as solar arrays and antennas.

Key words: air-floating trolley, gravity compensation, suspension system, deployable mechanism, ground deployment test

中图分类号: