• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (17): 148-161.doi: 10.3901/JME.2023.17.148

• 机械动力学 • 上一篇    下一篇

扫码分享

非轴对称复杂曲面回转件虚拟动平衡设计方法及试验

杨杰1,2, 崔国华1,2, 李海涛3, 张振山1,2, 和法洋4, 盛天豪5   

  1. 1. 上海工程技术大学机械与汽车工程学院 上海 201620;
    2. 上海市大型构件智能制造机器人技术协同创新中心 上海 201620;
    3. 中国农业大学工学院 北京 100083;
    4. 上海合纵重工机械有限公司 上海 201500;
    5. 上海航天设备制造总厂有限公司 上海 201100
  • 收稿日期:2022-08-09 修回日期:2023-03-05 出版日期:2023-09-05 发布日期:2023-11-16
  • 通讯作者: 崔国华(通信作者),男,1975年出生,博士,教授,博士研究生导师。主要研究方向为机器人机械学。E-mail:ghcui2020@163.com
  • 作者简介:杨杰,男,1987年出生,博士,讲师,硕士研究生导师。主要研究方向为环面蜗杆传动。E-mail:j.yang@sues.edu.cn
  • 基金资助:
    国家自然科学基金(52005317);上海市大型构件智能制造机器人技术协同创新中心2021年度开放基金(ZXP20211101)资助项目。

Design Method and Experiment of Virtual Dynamic Balance for Rotating Parts with Non-axisymmetry and Complex Surfaces

YANG Jie1,2, CUI Guohua1,2, LI Haitao3, ZHAGN Zhenshan1,2, HE Fayang4, SHENG Tianhao5   

  1. 1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620;
    2. Shanghai Collaborative Innovation Center of Intelligent Manufacturing Robot Technology for Large Components, Shanghai 201620;
    3. College of Engineering, China Agricultural University, Beijing 100083;
    4. Shanghai Hezong Heavy Industry Machinery Co., Ltd, Shanghai 201500;
    5. Shanghai Aerospace Equipment Manufacturer Co., Ltd, Shanghai 201100
  • Received:2022-08-09 Revised:2023-03-05 Online:2023-09-05 Published:2023-11-16

摘要: 针对非轴对称复杂曲面回转件的几何结构所引起的动不平衡问题,提出了一种虚拟动平衡设计方法,将整个系统简化为单个刚体旋转模型,根据平行轴定理推导出质径积的表达式,并针对相位滞后问题提出了采用正反转求相位补偿量的方法。建立了虚拟动平衡仿真平台,以环面蜗杆这类复杂曲面回转件为例进行仿真分析,获取待测点在稳定周期内沿X轴方向的振动幅值,结果表明:选取的两个平衡平面上均存在大小不等的不平衡质量,分别为11.8 g和14.7 g,通过相位补偿得到两个不平衡质量所对应的准确相位角分别为133.2°和93.6°,平衡后的振动幅值分别下降了97.5%和93%,平衡效果明显。最后,进行了实际的动平衡实验,测定得到初始的不平衡质量分别为13.66 g和15.21 g,相位角分别为131°和95°,和理论计算值相比,不平衡质量的最大误差为1.86 g,相位角的最大误差为2.2°;实际的平衡结果显示,左右两侧的剩余不平衡质量分别为1.33 g和0.18 g,不平衡量分别下降了90.3%和98.8%,进一步验证了理论模型及虚拟动平衡方法的正确性。

关键词: 虚拟动平衡, 非轴对称, 复杂曲面回转件, 仿真, 动平衡实验

Abstract: A virtual dynamic balance design method is proposed to solve the problem of dynamic imbalance caused by the geometric structure of non-axisymmetric complex surface revolving parts. Mainly, the whole designed system is simplified to a single rigid body. Then according to the parallel axis theorem, the expression of mass-radius product is obtained. A solution of calculating phase compensation by forward and reverse rotation to phase lag is also proposed. The toroidal worm is taken as an example to be simulated and analyzed on the designed system. After these,the vibration amplitude of the test point in the x-axis direction in the stable period is obtained. The unbalanced masses on two selected test planes are calculated,which are 11.8 g and 14.7 g respectively. By the above solution to phase lag, accurate phase angles corresponding to two unbalanced masses are also obtained, which are 133.2° and 93.6° respectively. After virtual dynamic balancing, the vibration amplitude is decreased by 97.5% and 93% respectively; the effect of balancing is obvious. Eventually, according to the stages of virtual dynamic balancing, the field dynamic balance experiment is carried out. The original unbalanced masses of the worm on the same two selected planes are obtained,which are 13.66 g and 15.21 g respectively. Phase angles corresponding to these two unbalanced masses are also obtained, which are 131° and 95° respectively. Compared with the theoretical value, the maximum error of unbalanced mass is 1.86 g and the maximum error of phase angle is 2.2°. After field dynamic balancing,the residual unbalance masses on the same two planes are obtained,which are 1.33 g and 0.18 g respectively. And the unbalance masses are decreased by 90.3% and 98.8% respectively. The correctness of the proposed theoretical model and virtual dynamic balance method is further demonstrated.

Key words: virtual dynamic balance, non-axisymmetric, complex surface rotating parts, simulation, dynamic balance experiment

中图分类号: