[1] 石怀龙,邬平波,曾京,等. 铁道客车悬挂系统柔度特性[J]. 交通运输工程学报, 2014, 14(4):45-52. SHI Huailong, WU Pingbo, ZENG Jing, et al. Flexibility characteristics of suspension system for railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4):45-52. [2] 栾治国. 200km/h速度级城际车转向架研究[D]. 成都:西南交通大学, 2018. LUAN Zhiguo. Research on 200km/h intercity bogie[D]. Chengdu:Southwest Jiaotong University, 2018. [3] 王建斌,李大地,屈升. 高速列车转向架构架疲劳试验载荷谱研究[J]. 机械工程学报, 2019, 55(24):172-177. WANG Jianbin, LI Dadi, QU Sheng. Research on the fatigue test spectrum for high speed train bogie frames[J]. Journal of Mechanical Engineering, 2019, 55(24):172-177. [4] ZHU H. The performance Analysis of anti-rolling torsion bar of high-speed train[C]//Advances in Mechanical Design. Singapore:Springer, 2017. [5] ZHANG K. The design and analysis on intensity of anti-roll Bar on 100% low-floor light rail vehicle[C]//Proceedings of the 6th International Conference on Information Engineering for Mechanics and Materials, Atlantis Press, 2016. [6] 刘文松. CRH380A抗侧滚扭杆系统研究[D]. 成都:西南交通大学, 2013. LIU Wensong. The research and manufacture on anti rolling bar system of CRH380A[D]. Chengdu:Southwest Jiaotong University, 2013. [7] 舒标,刘文松,杜方孟,等. 轨道车辆弯扭杆整杆刚度分析及计算[J]. 铁道机车车辆, 2017, 37(1):47-49. SHU Biao, LIU Wensong, DU Fangmeng, et al. Analysis and calculation of bending bar stiffness for railway vehicles[J]. Railway Locomotive & Car, 2017, 37(1):47-49. [8] DONG Y, SHANG Y. Analysis of characteristics and structure optimization of anti-rolling torsion bar[C]//Advances in Mechanical Design. Singapore:Springer, 2019:139-150. [9] 毕鑫,罗世辉. 抗侧滚扭杆装置建模方式对车辆动力学性能的影响[J]. 铁道车辆, 2012, 50(8):1-3, 47. BI Xin, LUO Shihui. The effect of modeling way of the anti-rolling torsion bar device on dynamics performance of vehicle[J]. Rolling Stock, 2012, 50(8):1-3, 47. [10] 王亚平,刘文松,郭春杰,等. 轨道车辆抗侧滚扭杆系统刚度的影响因素[J]. 铁道机车车辆, 2012, 32(2):49-52. WANG Yaping, LIU Wensong, GUO Chunjie, et al. Influence factor of railway vehicles anti-roll bar system stiffness[J]. Railway Locomotive & Car, 2012, 32(2):49-52. [11] ES J, MS P, HG N. An analytical study for improvement of roll stiffness accuracy of anti-roll bar system for railway vehicle[C/CD]//The Korean Society For Technology of Plasticity. Proceedings of Korea plastics processing society academic conference. Korea, 2015. [12] WANG Z. Parameter optimization of anti-roll bar based on stiffness[C/CD]//SAE Technical Paper 2020-01-0921. United States:SAE International, 2020. [13] 孙训方,方孝淑,关来泰. 材料力学[M]. 5版. 北京:高等教育出版社, 2009. SUN Xunfang, FANG Xiaoshu, GUAN Laitai. Mechanics of materials[M]. 5th ed. Beijing:Higher Education Press, 2009. [14] 齐振超,刘书暖,程晖,等. 基于三维多相有限元的CFRP细观切削机理研究[J]. 机械工程学报, 2016, 52(15):170-176. QI Zhenchao, LIU Shunuan, CHENG Hui, et al. Research on mesoscopic cutting mechanism of CFRP based on three-dimensional multiphase finite element methods[J]. Journal of Mechanical Engineering, 2016, 52(15):170-176. [15] 周驰,田程,丁炜琦,等. 基于有限元法的准双曲面齿轮时变啮合特性研究[J]. 机械工程学报, 2016, 52(15):36-43. ZHOU Chi, TIAN Cheng, DING Weiqi, et al. Analysis of hypoid gear time-varying mesh characteristics based on the finite element method[J]. Journal of Mechanical Engineering, 2016, 52(15):36-43. [16] 国家铁路局. 动车组抗侧滚扭杆:TB/T 3285-2019[S]. 北京:中国铁道出版社2019. National Railway Administration of People's Republic of China. Anti-rolling torsion bar for:EMU/DMU TB/T 3285-2019[S]. Beijing:China Railway Press, 2019. |