[1] ZHANG W, XU L, LI J, et al. Comparison of daily operation strategies for a fuel cell/battery tram[J]. International Journal of Hydrogen Energy, 2017, 42(29):18532-18539. [2] XU L, LI J, REIMER U, et al. Methodology of designing durability test protocol for vehicular fuel cell system operated in soft run mode based on statistic results of on-road data[J]. International Journal of Hydrogen Energy, 2017, 42(50):29840-29851. [3] XU L, REIMER U, LI J, et al. Design of durability test protocol for vehicular fuel cell systems operated in power-follow mode based on statistical results of on-road data[J]. Journal of Power Sources, 2018, 377:59-69. [4] XU L, YANG F, LI J, et al. Real time optimal energy management strategy targeting at minimizing daily operation cost for a plug-in fuel cell city bus[J]. International Journal of Hydrogen Energy, 2012, 37(20):15380-15392. [5] 侯中军,甘全,马由奇,等. 客车用燃料电池发动机耐久性研究[J]. 机械工程学报, 2010, 46(6):39-43. HOU Zhongjun, GAN Quan, MA Youqi, et al. Study on durability of the fuel cell power system for the bus application[J]. Journal of Mechanical Engineering, 2010, 46(6):39-43. [6] WANG P, ZHOU L, ZHANG Y, et al. Input-parallel output-series DC-DC boost converter with a wide input voltage range, for fuel cell vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9):7771-7781. [7] BI H, WANG P, CHE Y. H-type structural boost three-level DC-DC converter with wide voltage-gain range for fuel cell applications[J]. Journal of Power Electronics, 2018, 18(5):1303-1314. [8] GAO D, JIN Z, LIU J, et al. An interleaved step-up/step-down converter for fuel cell vehicle applications[J]. International Journal of Hydrogen Energy, 2016, 41(47):22422-22432. [9] DHIMISG M, SCHOFIELD N. Single-switch boost-buck DC-DC converter for industrial fuel cell and photovoltaics applications[J]. International Journal of Hydrogen Energy, 2022, 47(2):1241-1255. [10] WU X, WANG J, ZHANG Y, et al. Review of DC-DC converter topologies based on impedance network with wide input voltage range and high gain for fuel cell vehicles[J]. Automotive Innovation, 2021, 4(4):351-372. [11] YOUNG-JOO L, KHALIGH A, EMADI A. A compensation technique for smooth transitions in a noninverting buck-boost converter[J]. IEEE Transactions on Power Electronics, 2009, 24(4):1002-1015. [12] SON H, KIM J, LEE J, et al. A new buck-boost converter with low-voltage stress and reduced conducting components[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9):7030-7038. [13] LIAO H, LIANG T, YANG L, et al. Non-inverting buck-boost converter with interleaved technique for fuel-cell system[J]. IET Power Electronics, 2012, 5(8):1379-1388. [14] BANAEI M, BONAB H. A novel structure for single-switch nonisolated transformerless buck-boost DC-DC converter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1):198-205. [15] GORJI S, MOSTAAN A, TRAN MY H, et al. Non-isolated buck-boost DC-DC converter with quadratic voltage gain ratio[J]. IET Power Electronics, 2019, 12(6):1425-1433. [16] SARIKHANI A, ALLAHVERDINEJAD B, TORKAMAN H. A non-isolated buck-boost DC-DC converter with single switch[C]//9th Annual Power Electronics, Drives Systems and Technologies Conference, February 13-15, 2018, Tehran, Iran. New York:IEEE, 2018:369-373. [17] HWU K, YAU Y. Two types of KY buck-boost converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8):2970-2980. [18] HWU K, PENG T. A novel buck-boost converter combining KY and buck converters[J]. IEEE Transactions on Power Electronics, 2012, 27(5):2236-2241. [19] MIAO S, WANG F, MA X. A new transformerless buck-boost converter with positive output voltage[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):2965-2975. [20] ROSAS-CARO J, VALDEZ-RESENDIZ J, MAYOMALDONADO J, et al. Quadratic buck-boost converter with positive output voltage and minimum ripple point design[J]. IET Power Electronics, 2018, 11(7):1306-1313. [21] MOSTAAN A, GORJI S, SOLTANI M, et al. A novel quadratic buck-boost DC-DC converter without floating gate-driver[C]//2nd Annual Southern Power Electronics Conference, December 5-8, Auckland, New Zealand. New York:IEEE, 2016:1-5. [22] LI J, LIU J. A novel buck-boost converter with low electric stress on components[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4):2703-2713. [23] BANAEI M, SANI S. Analysis and implementation of a new SEPIC-based single-switch buck-boost DC-DC converter with continuous input current[J]. IEEE Transactions on Power Electronics, 2018, 33(12):10317-10325. [24] WANG H, GAILLARD A, HISSEL D. A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles[J]. Renewable Energy, 2019, 141:124-138. [25] ZHANG N, ZHANG G, SEE K, et al. A single-switch quadratic buck-boost converter with continuous input port current and continuous output port current[J]. IEEE Transactions on Power Electronics, 2018, 33(5):4157-4166. [26] MAROTI P, PADMANABAN S, HOLM-NIELSEN J, et al. A new structure of high voltage gain SEPIC converter for renewable energy applications[J]. IEEE Access, 2019, 7:89857-89868. [27] SARIKHANI A, ALLAHVERDINEJAD B, HAMZEH M, et al. A continuous input and output current quadratic buck-boost converter with positive output voltage for photovoltaic applications[J]. Solar Energy, 2019, 188:19-27. [28] 胡雪峰,王琳,代国瑞,等. 单开关高增益Boost-Sepic集成变换器[J]. 中国电机工程学报, 2018, 35(8):2018-2025. HU Xuefeng, WANG Lin, DAI Guorui, et al. High step-up boost-sepic integrated converters with a single switch[J]. Proceedings of the CSEE, 2018, 35(8):2018-2025. [29] 肖洒,李德骏,陈燕虎,等. 模块化CC/CV变换器及其控制策略[J]. 机械工程学报, 2020, 56(14):196-206. XIAO Sa, LI Dejun, CHEN Yanhu, et al. Modular CC/CV converter and its control strategy[J]. Journal of Mechanical Engineering, 2020, 56(14):196-206. [30] HAJI-ESMAEILI M, BABAEI E, SABAHI M. High step-up quasi-Z source DC-DC converter[J]. IEEE Transactions on Power Electronics, 2018, 33(12):10563-10571. [31] 曾绍桓,周国华,周述晗,等. 电流型控制三态Boost变换器的小信号建模与负载瞬态特性分析[J]. 电工技术学报, 2019, 34(7):1468-1477. ZENG Shaohuan, ZHOU Guohua, ZHOU Shuhan, et al. Small-signal modeling and load transient characteristic analysis of current mode controlled tri-state Boost converter[J]. Transactions of China Electrotechnical Society, 2019, 34(7):1468-1477. [32] 王孝伟,李铁才,石坚,等. 三段式门极驱动抑制MOSFET关断过冲振荡的研究[J]. 电机与控制学报, 2013, 17(7):1-6. WANG Xiaowei, LI Tiecai, SHI Jian, et al. Three-stage type gate voltage drive circuit to reduce turn-off voltage overshoot and ring in MOSFET[J]. Electric Machines and Control, 2013, 17(7):1-6. [33] 余卓平,韩伟,徐松云,等. 电子液压制动系统液压力控制发展现状综述[J]. 机械工程学报, 2017, 53(14):1-15. YU Zhuoping, HAN Wei, XU Songyun, et al. Review on hydraulic pressure control of electro-hydraulic brake system[J]. Journal of Mechanical Engineering, 2017, 53(14):1-15. [34] 马雨辉,皇甫宜耿,徐良材,等. 一种基于开关电容倍压单元的新型浮地并联高增益变换器[J]. 电气工程学报, 2021, 16(2):181-189. MA Yuhui, HUANGFU Yigeng, XU Liangcai, et al. A novel floating parallel high-gain converter based on switched capacitor voltage doubler[J]. Journal of Electrical Engineering, 2021, 16(2):181-189. [35] 万文轩,刘纲,尹力,等. 一种具有大降压比的新型 DC-DC变换器[J]. 电气工程学报, 2021, 16(3):33-39. WAN Wenxuan, LIU Gang, YIN Li, et al. A novel DC-DC converter with high step-down ratio[J]. Journal of Electrical Engineering, 2021, 16(3):33-39. |