机械工程学报 ›› 2023, Vol. 59 ›› Issue (11): 1-15.doi: 10.3901/JME.2023.11.001
罗仕鉴1, 龚何波1, 林伟2
收稿日期:
2022-03-25
修回日期:
2022-12-10
出版日期:
2023-06-05
发布日期:
2023-07-19
通讯作者:
龚何波(通信作者),男,1994年出生,博士研究生。主要研究方向为智能产品设计,人机交互设计。E-mail:gonghebo@163.com
作者简介:
罗仕鉴,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为工业设计,用户体验与产品创新设计,服务设计。E-mail:sjluo@zju.edu.cn;林伟,男,1966年出生,教授。主要研究方向为工业设计,设计艺术。E-mail:13906004915@163.com
基金资助:
LUO Shijian1, GONG Hebo1, LIN Wei2
Received:
2022-03-25
Revised:
2022-12-10
Online:
2023-06-05
Published:
2023-07-19
摘要: 人工智能与通讯技术的蓬勃发展促进了智能产品的进步,加速了产品设计的变革。从工业设计出发,通过对国内外相关文献研究,讨论了智能产品和智能产品交互设计的相关概念,提出了智能产品交互设计的本体层、行为层和价值层三个层次模型,系统地探讨了设计大数据、需求驱动与知识驱动的设计、产品设计方案生成与衍化、产品设计标准生成、产品设计方案评价生成等五个方面的研究内容与体系结构,以及关键技术和存在的问题,阐述了智能产品交互设计中的主要方法。针对智能产品交互设计的发展,提出了智能产品交互设计的研究热点和未来趋势。
中图分类号:
罗仕鉴, 龚何波, 林伟. 智能产品交互设计研究现状与进展[J]. 机械工程学报, 2023, 59(11): 1-15.
LUO Shijian, GONG Hebo, LIN Wei. Status and Progress of Intelligent Products Interaction Design[J]. Journal of Mechanical Engineering, 2023, 59(11): 1-15.
[1] LEITÃO P,RODRIGUES N,BARBOSA J,et al. Intelligent products:The grace experience[J]. Control Engineering Practice,2015,42:95-105. [2] RIEL A,KREINER C,MACHER G,et al. Integrated design for tackling safety and security challenges of smart products and digital manufacturing[J]. CIRP annals,2017,66(1) :177-180. [3] 李洪阳,魏慕恒,黄洁,等. 信息物理系统技术综述[J]. 自动化学报, 2019, 45(1):37-50. LI Hongyang,WEI Muheng,HUANG Jie,et al. Survey on cyber-physical systems[J]. ACTA Automatica Sinica,2019,45(1):37-50. [4] SHAFIQUE K,KHAWAJA B A,SABIR F,et al. Internet of things (IoT) for next-generation smart systems:a review of current challenges,future trends and prospects for emerging 5G-IoT scenarios[J]. IEEE Access,2020,8:23022-23040. [5] MITTAL S,KHAN M A,ROMERO D,et al. Smart manufacturing:characteristics,technologies and enabling factors[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2019,233(5):1342-1361. [6] YIN S,KAYNAK O. Big data for modern industry:Challenges and trends [point of view][J]. Proceedings of the IEEE,IEEE,2015,103(2):143-146. [7] GUILLÉN A,HERRERA L J,POMARES H,et al. Decision support system to determine intention to use mobile payment systems on social networks:A methodological analysis[J]. International Journal of Intelligent Systems,2016,31(2):153-172. [8] RIJSDIJK S A,HULTINK E J. How today’s consumers perceive tomorrow's smart products[J]. Journal of Product Innovation Management, 2009, 26(1):24-42. [9] MCFARLANE D,SARMA S,CHIRN J L,et al. Auto ID systems and intelligent manufacturing control[J]. Engineering Applications of Artificial Intelligence,2003,16(4) :365-376. [10] VENTÄ O (ed). Intelligent products and systems. technology theme [M]. Espoo:VTT Technical Research Centre of Finland,2007. [11] KIRITSIS D. Closed-loop PLM for intelligent products in the era of the internet of things[J]. Computer-Aided Design,2011,43(5):479-501. [12] RIJSDIJK S A,HULTINK E J,DIAMANTOPOULOS A. Product intelligence:Its conceptualization,measurement and impact on consumer satisfaction[J]. Journal of the Academy of Marketing Science,2007,35(3):340-356. [13] MEYER G G, FRÄMLING K, HOLMSTRÖM J. Intelligent products:A survey [J]. Computers in industry,2009,60(3):137-148. [14] WUEST T,SCHMIDT T,WEI W,et al. Towards (pro-)active intelligent products[J]. International Journal of Product Lifecycle Management, 2018, 11(2) :154-189. [15] DIX A,FINLAY J,ABOWD G D,et al. Human-computer interaction[M]. Harlow:Pearson Education,2003. [16] 罗仕鉴,李文杰. 产品族设计DNA[M]. 北京:中国建筑工业出版社,2016. LUO Shijian,LI Wenjie. Product family design DNA[M]. Beijing:China Architecture & Building Press,2016. [17] NIELSEN J. Enhancing the explanatory power of usability heuristics[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1994:152-158. [18] LUO S. Status and progress of product shape bionic design[J]. Journal of Mechanical Engineering,2018,54(21):138. [19] 胡洁,陈斌. 创新设计中的源泉、机制和评价问题研究综述[J]. 包装工程,2020,41(18):60-70. HU Jie,CHEN Bin. Source,operating mechanism,and evaluation of innovative design[J]. Packaging Engineering,2020,41(18):60-70. [20] PANDAY H,BHATTACHARYA B. Fusion of TRIZ and axiomatic design principles:An investigation in scalability of system design processes to contemporary design frameworks[C]// Chakrabarti A. Research into Design for a Connected World. Singapore:Springer Singapore,2019:99-108. [21] RAUCH E,SPENA P R,MATT D T. Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs[J]. International Journal on Interactive Design and Manufacturing (IJIDeM),Springer,2019,13(1):1-22. [22] 石元伍,齐廉恒美. 基于AD与TRIZ的病区巡护机器人功能集成设计[J]. 设计,2019,32(8):131-133. SHI Yuanwu,QI Lianhengmei. Functional integation design of patrol robot based on AD and TRIZ[J]. Design,2019,32(8):131-133. [23] 侯亮,唐任仲,徐燕申. 产品模块化设计理论、技术与应用研究进展[J]. 机械工程学报,2004(1):56-61. HOU Liang,TANG Renzhong,XU Yanshen. Review of theory,key technologies and application of modular product design[J]. Chinese Journal of Mechanical Engineering,2004(1):56-61. [24] 王宏安,田丰,范向民. 人工智能,智能人机交互[M]. 北京:电子工业出版社,2020. WANG Hongan,TIAN Feng,FAN Xiangmin. Artificial intelligence,intelligent human-computer interaction[M]. Beijing:Publishing House of Electronics Industry,2020. [25] 袁庆曙,王若楠,潘志庚,等. 空间增强现实中的人机交互技术综述[J]. 计算机辅助设计与图形学学报,2021,33(3):321-332. YUAN Qingshu,WANG Ruonan,PAN Zhigeng,et al. A survey on human-computer interaction in spatial augmented reality[J]. Journal of Computer-Aided Design & Computer Graphics,2021,33(3):321-332. [26] 叶帅男,储向童,巫英才. 沉浸式可视化综述[J]. 计算机辅助设计与图形学学报,2021,33(4):497-507. YE Shuainan,CHU Xiangtong ,WU Yingcai. A survey on immersive visualization[J]. Journal of Computer-Aided Design & Computer Graphics,2021,33(4):497-507. [27] ALTSHULLER G. 40 principles:TRIZ keys to innovation[M]. Worcester:Technical Innovation Center,2002. [28] 张鹏,冯浩,杨通达,等. 数字孪生与TRIZ集成迭代参数演化创新设计过程模型[J]. 计算机集成制造系统,2019,25(6):1361-1370. ZHANG Peng,FENG Hao,YANG Tongda,et al. Innovative design process model of TRIZ and digital twin integration iterative evolution based on parameter deduction.[J]. Computer Integrated Manufacturing Systems,2019,25(6):1361-1370. [29] WU C,ZHOU Y,PESSÔA M V P,et al. Conceptual digital twin modeling based on an integrated five-dimensional framework and TRIZ function model[J]. Journal of Manufacturing Systems,2021,58:79-93. [30] 檀润华. 批量“创新工程师-发明”模式下的C-TRIZ新发展[J]. 工业技术经济,2021,40(9):3-11. TAN Runhua. The further development of C-TRIZ under the pattern of mass “Innovative Engineer-Invention”[J]. Journal of Industrial Technological Economics,2021,40(9):3-11. [31] CHERIFI A,GARDONI M. TRIZ in ecodesign:An alternative in the choice of environmental solutions without pollution transfer[C]// Strasbourg,France:2018. [32] LIU L,CAVALLUCCI D,LI Y. A Multi-perspective and multi-level based approach to organize and represent inventive knowledge[C]// New Opportunities for Innovation Breakthroughs for Developing Countries and Emerging Economies:19th International TRIZ Future Conference, TFC 2019, Marrakesh, Morocco, Proceedings 19. Springer International Publishing, 2019:228-239. [33] WU Y,ZHOU F,KONG J. Innovative design approach for product design based on TRIZ,AD,fuzzy and Grey relational analysis[J]. Computers & Industrial Engineering,2020,140:106276. [34] SUH N P. The principles of design[M]. New York:Oxford University Press,1990. [35] KUMAR P,TANDON P. A paradigm for customer-driven product design approach using extended axiomatic design[J]. Journal of Intelligent Manufacturing,2019,30(2):589-603. [36] AYDOĞAN S,GÜNAY E E,AKAY D,et al. Concept design evaluation by using Z-axiomatic design[J]. Computers in Industry,2020,122:103278. [37] GUALTIERI L,RAUCH E,ROJAS R,et al. Application of axiomatic design for the design of a safe collaborative human-robot assembly workplace[C]// MATEC Web of Conferences. EDP Sciences,2018,223:01003. [38] PADALA S P. Application of axiomatic design and design structure matrix for early identification of changes in construction projects[J]. Journal of The Institution of Engineers (India):Series A,2022:1-15. [39] FARID A M,RIBEIRO L. An axiomatic design of a multiagent reconfigurable mechatronic system architecture[J]. IEEE Transactions on Industrial Informatics,IEEE,2015,11(5):1142-1155. [40] 王昊琪,张旭,唐承统. 复杂工程系统下基于模型的公理化设计方法[J]. 机械工程学报,2018,54(7):184-198. WANG Haoqi,ZHANG Xu ,TANG Chengtong. Model-based axiomatic design approach for complex engineering systems[J]. Journal of Mechanical Engineering,2018,54(7):184-198. [41] GAUSS L,LACERDA D P,MIGUEL P A C. Module-based product family design:Systematic literature review and meta-synthesis[J]. Journal of Intelligent Manufacturing,Springer,2021,32(1):265-312. [42] SALIBA M A,AZZOPARDI S,PACE C,et al. A heuristic approach to module synthesis in the design of reconfigurable manufacturing systems[J]. The International Journal of Advanced Manufacturing Technology,2019,102(9):4337-4359. [43] SONEGO M,ECHEVESTE M E S, DEBARBA H G. The role of modularity in sustainable design:A systematic review[J]. Journal of Cleaner Production,2018,176:196-209. [44] 张海燕,侯力,罗岚,等. 变双曲圆弧齿线圆柱齿轮专用机床的模块化设计[J]. 机械工程学报,2021,57(3):77-86. ZHANG Haiyan,HOU Li ,LUO Lan,et al. Modular design for machine tools of variable hyperbolic circular-arc-tooth-trace cylindrical gear[J]. Journal of Mechanical Engineering,2021,57(3):77-86. [45] 罗仕鉴,朱上上,冯骋. 面向工业设计的产品族设计DNA[J]. 机械工程学报,2008(7):123-128. LUO Shijian ,ZHU Shangshang,FENG Cheng. Product family design DNA in industriral design[J]. Journal of Mechanical Engineering,2008(7):123-128. [46] 朱上上,罗仕鉴,应放天,等. 支持产品视觉识别的产品族设计DNA[J]. 浙江大学学报(工学版),2010,44(4):715-721. ZHU Shangshang,LUO Shijian,YING Fangtian,et al. Product family design DNA for product visual identity[J]. Journal of Zhejiang University (Engineering Science),2010,44(4):715-721. [47] 傅业焘,罗仕鉴. 面向风格意象的产品族外形基因设计[J]. 计算机集成制造系统,2012,18(3):449-457. FU Yetao,LUO Shijian. Style perception-oriented product family shape gene design[J]. Computer Integrated Manufacturing Systems,2012,18(3):449-457. [48] 罗仕鉴,李文杰,傅业焘. 消费者偏好驱动的SUV产品族侧面外形基因设计[J]. 机械工程学报,2016,52(2):173-181. LUO Shijian ,LI Wenjie,FU Yetao. Consumer preference-driven SUV product family profile gene design[J]. Journal of Mechanical Engineering,2016,52(2):173-181. [49] 刘彦伯,张吉堂,赵泽敏. 一种产品族设计新方法——DSM模糊层次法[J]. 机械设计与制造工程,2020,49(2):1-4. LIU Yanbo,ZHANG Jitang,ZHAO Zemin. A new method of product family design———DSM fuzzy hierarchy method[J]. Machine Design and Manufacturing Engineering,2020,49(2):1-4. [50] 肖人彬,林文广. 数据驱动的产品族设计研究[J]. 机械设计,2020,37(6):1-10. XIAO Renbin ,LIN Wenguang,Research on data-driven product family design[J]. Journal of Machine Design,2020,37(6):1-10. [51] PAKSERESHT M,MAHDAVI I,SHIRAZI B,et al. Co-reconfiguration of product family and supply chain using leader-follower Stackelberg game theory:Bi-level multi-objective optimization[J]. Applied Soft Computing,2020,91:106-203. [52] CHENG X,XIAO R,WANG H. A method for coupling analysis of association modules in product family design[J]. Journal of Engineering Design,2018,29(6):327-352. [53] CAETANO I,SANTOS L,LEITÃO A. Computational design in architecture:Defining parametric,generative,and algorithmic design[J]. Frontiers of Architectural Research,2020,9(2):287-300. [54] MCKNIGHT M. Generative design:What it is? How is it being used? Why it’s a game changer[J]. KnE Engineering,2017,2(2):176. [55] KRISH S. A practical generative design method[J]. Computer-Aided Design,2011,43(1):88-100. [56] ALCAIDE-MARZAL J,DIEGO-MAS J A,ACOSTA-ZAZUETA G. A 3D shape generative method for aesthetic product design[J]. Design Studies,2020,66:144-176. [57] MATEJKA J,GLUECK M,BRADNER E,et al. Dream lens:Exploration and visualization of large-scale generative design datasets[C]// Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 2018:1-12. [58] MOUNTSTEPHENS J,TEO J. Progress and challenges in generative product design:A review of systems[J]. Computers,2020,9(4):80. [59] OH S,JUNG Y,KIM S,et al. Deep generative design:Integration of topology optimization and generative models[J]. Journal of Mechanical Design,American Society of Mechanical Engineers Digital Collection,2019,141(11):111405-1. [60] CRESWELL A,WHITE T,DUMOULIN V,et al. Generative adversarial networks:An overview[J]. IEEE Signal Processing Magazine,IEEE,2018,35(1):53-65. [61] BURNAP A,LIU Y,PAN Y,et al. Estimating and exploring the product form design space using deep generative models[C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical 2016,50107:V02AT03A013. [62] BAN S,HYUN K H. 3D computational sketch synthesis framework:Assisting design exploration through generating variations of user input sketch and interactive 3D model reconstruction[J]. Computer-Aided Design, 2020,120:102789. [63] GATYS L A,ECKER A S,BETHGE M. Image style transfer using convolutional neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:2414-2423. [64] ISOLA P,ZHU J Y,ZHOU Tinghui,et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:1125-1134. [65] HU Zhiyuan,JIA Jia,LIU Bei,et al. Aesthetic-aware image style transfer[C]. Proceedings of the 28th ACM International Conference on Multimedia. 2020:3320-3329. [66] SHUGRINA M,SHAMIR A,MATUSIK W. Fab forms:Customizable objects for fabrication with validity and geometry caching[C]. ACM Transactions on Graphics (TOG),ACM New York,NY,USA,2015,34(4):1-12. [67] KHAN S,GUNPINAR E,SENER B. GenYacht:An interactive generative design system for computer-aided yacht hull design[J]. Ocean Engineering,2019,191:106462. [68] MARTÍNEZ J,DUMAS J,LEFEBVRE S,et al. Structure and appearance optimization for controllable shape design[C]. ACM Transactions on Graphics (TOG),ACM New York,NY,USA,2015,34(6):1-11. [69] KAZI R H,GROSSMAN T,CHEONG H,et al. DreamSketch:Early stage 3D design explorations with sketching and generative design [C]//UIST. 2017,14:401-414. [70] GERO J S,KAZAKOV V. A genetic engineering approach to genetic algorithms[J]. Evolutionary Computation,2001,9(1):71-92. [71] GU N,BEHBAHANI P A. Shape grammars:A key generative design algorithm[C]. Handbook of the Mathematics of the Arts and Sciences,Springer Science and Business Media LLC Berlin,Germany,2018:1-21. [72] KENNEDY J. Handbook of nature-inspired and innovative computing[M]. Springer,2006. [73] DHOKIA V,ESSINK W P,FLYNN J M. A generative multi-agent design methodology for additively manufactured parts inspired by termite nest building[J]. CIRP Annals,2017,66(1):153-156. [74] CHAUDHURI S,KALOGERAKIS E,GIGUERE S,et al. Attribit:Content creation with semantic attributes[C]// Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology. 2013:193-202. [75] ZHOU Y,KALOGERAKIS E,WANG R,et al. Direct shape optimization for strengthening 3D printable objects[C]// Computer Graphics Forum. 2016, 35(7):333-342. [76] BICKEL B,BÄCHER M,OTADUY M A,et al. Design and fabrication of materials with desired deformation behavior[C]. ACM Transactions on Graphics (TOG),ACM New York,NY,USA,2010,29(4):1-10. [77] CHAUDHURI S,KALOGERAKIS E,GUIBAS L,et al. Probabilistic reasoning for assembly-based 3D modeling[R]. ACM Siggraph 2011 Papers,2011:1-10. [78] KALOGERAKIS E,CHAUDHURI S,KOLLER D,et al. A probabilistic model for component-based shape synthesis[C]. Acm Transactions on Graphics (TOG),ACM New York,NY,USA,2012,31(4):1-11. [79] DEMIRBILEK O,PARK M. A survey of criteria for the assessment of good product design[C]// Proceedings of the Fourth European Academy of Design Conference. 2001:370-377. [80] 寇洁,韩冰,杨程丽,等. 数字化环境下标准应用模式探索研究[J]. 航空标准化与质量,2019(6):10-13. KOU Jie,HAN Bing,YANG Chengli,et al. Exploration and research on standard application mode in digital environment[J]. Aeronautic Standardization & Quality,2019(6):10-13. [81] 程永胜,徐骁琪,陈国强. 基于层次分析法和感性工学的工程车造型设计评价[J]. 包装工程,2020,41(20):85-90. CHENG Yongsheng,XU Xiaoqi,CHEN Guoqiang. Evaluation of engineering vehicle design based on AHP and KE method[J]. Packaging Engineering,2020,41(20):85-90. [82] 徐玖平,李军. 多目标决策的理论与方法[M]. 北京:清华大学出版社有限公司,2005. XU Jiuping,LI Jun. Multiple objective decision-making theory and methods[M]. Beijing:Tsinghua University Press,2005. [83] SHAW K,SHANKAR R,YADAV S S,et al. Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain[J]. Expert Systems with Applications,2012,39(9):8182-8192. [84] GALANKASHI R M,RAFIEI M F,GHEZELBASH M. Portfolio selection:A fuzzy-ANP approach[J]. Financial Innovation,2020,6(1):17. [85] YADAV S,SINGH S P. An integrated fuzzy-ANP and fuzzy-ISM approach using blockchain for sustainable supply chain[J]. Journal of Enterprise Information Management,2020,34(1):54-78. [86] SALIH M M,ZAIDAN B B,ZAIDAN A A,et al. Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017[J]. Computers & Operations Research,2019,104:207-227. [87] KUMAR D,RAHMAN Z,CHAN F T S. A fuzzy AHP and fuzzy multi-objective linear programming model for order allocation in a sustainable supply chain:A case study[J]. International Journal of Computer Integrated Manufacturing,2017,30(6):535-551. [88] KUTLU GÜNDOĞDU F,KAHRAMAN C. A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets[J]. Engineering Applications of Artificial Intelligence,2019,85:307-323. [89] WANG T. A novel approach of integrating natural language processing techniques with fuzzy TOPSIS for product evaluation[J]. Symmetry,Multidisciplinary Digital Publishing Institute,2022,14(1):120. [90] 彭定洪,卞志洋. 面向产品设计方案的犹豫模糊Kansei-TOPSIS评价方法[J]. 系统科学与数学,2021,41(6):1630-1647. PENG Dinghong,BIAN Zhiyang. Hesitant fuzzy Kansei-TOPSIS evaluation method for product design scheme[J]. Journal of Systems Science and Complexity,2021,41(6):1630-1647. [91] ASADABADI M R,CHANG E,SABERI M. Are MCDM methods useful? A critical review of Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP)[J]. Cogent Engineering, 2019, 6(1):1623153. [92] CHOWDHURY P,PAUL S K. Applications of MCDM methods in research on corporate sustainability:A systematic literature review[J]. Management of Environmental Quality,2020,31(2):385-405. [93] HAMDAN S,CHEAITOU A. Supplier selection and order allocation with green criteria:An MCDM and multi-objective optimization approach[J]. Computers & Operations Research,2017,81:282-304. [94] YU D,KOU G,XU Z,et al. Analysis of collaboration evolution in AHP research:1982-2018[J]. International Journal of Information Technology & Decision Making,2021,20(1):7-36. [95] DARKO A,CHAN A P C,AMEYAW E E,et al. Review of application of analytic hierarchy process (AHP) in construction[J]. International Journal of Construction Management,2019,19(5):436-452. [96] SHARAF H K,ISHAK M R,SAPUAN S M,et al. Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ-morphological chart-ANP methods[J]. Journal of Materials Research and Technology,2020,9(4):9182-9188. [97] 李齐,张鹏,刘景超,等. 灰度关联法分析冰温贮藏对鲜枸杞品质的影响[J]. 包装工程,2021,42(5):55-64. LI Qi,ZHANG Peng,LIU Jingchao,et al. Effects of controlled freezing point storage on quality of fresh lycium barbarum analyzed by gray correlation method[J].Packaging Engineering.2021,42(5):55-64. [98] ÇELIKBILEK Y,TÜYSÜZ F. An in-depth review of theory of the TOPSIS method:An experimental analysis[J]. Journal of Management Analytics, 2020,7(2):281-300. [99] TORLAK N G,DEMIR A,BUDUR T. Using VIKOR with structural equation modeling for constructing benchmarks in the Internet industry[J]. Benchmarking,2021,28(10):2952-2976. [100] TAN T,MILLS G,PAPADONIKOLAKI E,et al. Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM):A review[J]. Automation in Construction,2021,121:103451. [101] 刘亮辉,汪永超,白飞先,等. 基于层次分析和TOPSIS的刀具材料选择优化[J]. 组合机床与自动化加工技术,2018(4):174-177,181. LIU Lianghui,WANG Yongchao,BAI Feixian,et al. Optimization of tool material selection based on analytic hierarchy process and TOPSIS[J]. Modular Machine Tool & Automatic Manufacturing Technique,2018(4):174-177,181. [102] TAN Y-S,CHEN H,WU S. Evaluation and implementation of environmentally conscious product design by using AHP and grey relational analysis approaches[J]. Foundation for Environmental Protection and Research,2019,28(107):857-864. [103] RANI P,MISHRA A R,ANSARI M D,et al. Assessment of performance of telecom service providers using intuitionistic fuzzy grey relational analysis framework (IF-GRA)[J]. Soft Computing,2021,25(3):1983-1993. [104] OLABANJI O M,MPOFU K. Appraisal of conceptual designs:coalescing fuzzy analytic hierarchy process (F-AHP) and fuzzy grey relational analysis (F-GRA)[J]. Results in Engineering,2021,9:100194. [105] MOUSAVI S A,SEITI H,HAFEZALKOTOB A,et al. Application of risk-based fuzzy decision support systems in new product development:An R-VIKOR approach[J]. Applied Soft Computing,2021,109:107456. [106] TSANG Y P,WU C H,LIN K Y,et al. Unlocking the power of big data analytics in new product development:An intelligent product design framework in the furniture industry[J]. Journal of Manufacturing Systems,2022,62:777-791. [107] JAGTAP S,DUONG L N K. Improving the new product development using big data:A case study of a food company[J]. British Food Journal,2019,121(11):2835-2848. [108] ALI S,POULOVA P,YASMIN F,et al. How big data analytics boosts organizational performance:The mediating role of the sustainable product development[J]. Journal of Open Innovation:Technology,Market,and Complexity,2020,6(4):190. [109] 罗仕鉴. 群智创新:人工智能2.0时代的新兴创新范式[J]. 包装工程,2020,41(6):50-56,66. LUO Shijian. Crowd intelligence innovation:A new innovation paradigm in the AI 2.0 Era[J]. Packaging Engineering,2020,41(6):50-56,66. |
[1] | 严如强, 许文纲, 王志颖, 朱启翔, 周峥, 赵志斌, 孙闯, 王诗彬, 陈雪峰, 张军辉, 徐兵. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
[2] | 戴国洪, 张道涵, 彭思敏, 苗一凡, 卓悦, 杨瑞鑫, 于全庆. 人工智能在动力电池健康状态预估中的研究综述[J]. 机械工程学报, 2024, 60(4): 391-408. |
[3] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[4] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[5] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[6] | 温楷儒, 陈祝云, 黄如意, 李东鹏, 李巍华. 基于可解释时空图卷积网络的多传感数据融合诊断方法[J]. 机械工程学报, 2024, 60(12): 158-167. |
[7] | 张海伦, 许庆, 高博麟, 王建强, 李克强. 网联环境下驾驶人响应机制——一种交叉路口接近行为定性效应分析与定量驾驶模式提取案例[J]. 机械工程学报, 2024, 60(10): 22-47. |
[8] | 谭征宇, 张瑞佛, 刘芝孜, 金奕, 贺刚. 智能网联汽车人机交互信任研究现状与展望[J]. 机械工程学报, 2024, 60(10): 366-383. |
[9] | 郑湃, 李成熙, 殷悦, 张荣, 鲍劲松, 王柏村, 谢海波, 王力翚. 增强现实辅助的互认知人机安全交互系统[J]. 机械工程学报, 2023, 59(6): 173-184. |
[10] | 高一聪, 王彦坤, 郑浩, 魏喆, 谭建荣. 下肢康复外骨骼的步态交互设计研究进展[J]. 机械工程学报, 2023, 59(17): 175-188. |
[11] | 陶飞, 张辰源, 刘蔚然, 张贺, 马昕, 高鹏飞, 张建康. 数字工程及十个领域应用展望[J]. 机械工程学报, 2023, 59(13): 193-215. |
[12] | 汪俊亮, 高鹏捷, 张洁, 王力翚. 制造大数据分析综述:内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16. |
[13] | 从靖晨, 项忠霞, 李心雨, 董良, 李巨韬, 陈俊贤. 基于知识图谱的智能产品服务系统交互设计研究[J]. 机械工程学报, 2023, 59(11): 94-105. |
[14] | 王伟伟, 魏婷, 余隋怀, 陈健. 面向动态场景的智能产品交互认知负荷评估方法研究[J]. 机械工程学报, 2023, 59(11): 106-116. |
[15] | 王文东, 李杰, 张俊博, 秦雷, 袁小庆. 基于迁移学习的手部离散动作识别方法研究[J]. 机械工程学报, 2022, 58(7): 12-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||