[1] SOLMAZ S, CORLESS M, SHORTEN R. A methodology for the design of robust rollover prevention controllers for automotive vehicles with active steering[J]. International Journal of Control, 2007, 80(11):1763-1779. [2] RAJAMANI R, PIVABONGKARN D. New paradigms for the integration of yaw stability and rollover prevention functions in vehicle stability control[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1):249-261. [3] DOUGLAS J W, MODLIN R R. The truck stabilizer a means of preventing roll-over during braking and handling test situations[R]. SAE Technical Paper Series, SAE International National Truck Meeting and Truck Engineering Exposition-(OCT 03, 1977), SAE Technical Paper Series, 1. [4] WIELENGA T J, CHACE M A. A study in rollover prevention using anti-rollover braking[C]//Sae Automotive Dynamics & Stability Conference, 2000, 1:1642. [5] CHEN B C, PENG H. Rollover prevention for sports utility vehicles with human-in-the-loop evaluations[J]. 5th Int'l Symposium on Advanced Vehicle Control, 2000, 8:22-24. [6] CHEN B C, PENG H. Differential-braking-based rollover prevention for sport utility vehicles with human-in-the-loop evaluations[J]. Vehicle System Dynamics, 2001, 36(4-5):359-389. [7] 廖昌荣. 汽车悬架系统磁流变阻尼器研究[D]. 重庆:重庆大学, 2001. LIAO Changrong. Research on magnetorheological damper of automobile suspension system[D]. Chongqing:Chongqing University, 2001. [8] 廖昌荣, 余淼, 陈伟民, 等. 汽车磁流变减振器设计原理与实验测试[J]. 中国机械工程, 2002, 13(16):1391-1394. LIAO Changrong, YU Miao, CHEN Weimin. Design principle and experimental test of automotive magnetorheological damper[J]. China Mechanical Engineering 2002, 3(16):391-1394. [9] 廖昌荣, 余淼, 杨建春, 等. 汽车磁流变减振器设计中值得注意的若干技术问题[J]. 汽车技术, 2001(5):11-14. LIAO Changrong, YU Miao, YANG Jianchun. Several technical problems worthy of attention in the design of automotive magnetorheological damper[J]. Automotive Technology, 2001(5):11-14. [10] 董小闵, 余淼, 廖昌荣, 等. 磁流变半主动悬架对车辆侧倾稳定性改进分析[J]. 上海交通大学学报, 2009(10):1541-1544. DONG Xiaomin, YU Miao, LIAO Changrong, et al. Improvement analysis of vehicle roll stability by magnetorheological semi-active suspension[J]. Journal of Shanghai Jiao Tong University, 2009(10):1541-1544. [11] VUKOBRATOVIC M, JURICIC D. Contribution to the synthesis of biped gait[J]. IEEE Transactions on Biomedical Engineering, 1968, BME-16(1):1-6. [12] VUKOBRATOVIC M, TOKIC D. Dynamic control of unstable locomotion robots[J]. Mathematical Biosciences, 975, 4(1):9-157. [13] VUKOBRATOVIC M, ORAVAC B. Zero-moment point-thirty five years of its life[J]. International Journal of Humanoid Robotics, 2004, 1(01):7-173. [14] JINHYUNKIM, AN K C. Real-time zero moment point compensation method using null motion for mobile manipulators[J]. Advanced Robotics, 2006, 10(5):81-593. [15] SUGANO S, UANG Q, ATO I. Stability criteria in controlling mobile robotic systems[C]. IEEE/RSJ International Conference on Intelligent Robots & Systems, 1993. [16] SARDAIN P B G. Forces acting on a biped robot. Center of pressure-zero moment point[J]. IEEE Transactions on Systems, Man, nd Cybernetics-Part A:ystems and Humans, 2004, 4(5):30-637. [17] DASTGUPTA A, AKAMURA Y, DSSGUPTA A. Making feasible walking motion of humanoid robots from human motion capture data[C]. IEEE Int. Conf. Robotics and Automation, 1999:1044-1049. [18] MERIAM J L, KRAIGE L G, BOLTON J N. Engineering Mechanics:Statics[M]. 8th ed. 2016. |