• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (1): 131-140.doi: 10.3901/JME.2023.01.131

• 机械动力学 • 上一篇    下一篇

扫码分享

基于转子端数据驱动LSTM-CNN模型的高速旋转系统运行状态识别方法

易聪1,2, 杜建军1, 尹际雄2,3, 朱海斌2,3, 邓炜坤2,3, 白宝亮4, 付从艺4   

  1. 1. 哈尔滨工业大学(深圳)机电工程与自动化学院 深圳 518000;
    2. 浙江清华柔性电子技术研究院检测与装备事业部 嘉兴 314006;
    3. 嘉兴市柔性电子智能感知与先进制造技术重点实验室 嘉兴 314006;
    4. 浙江荷清柔性电子技术有限公司新技术研究中心 杭州 310000
  • 收稿日期:2021-12-22 修回日期:2022-08-08 出版日期:2023-01-05 发布日期:2023-03-30
  • 通讯作者: 朱海斌(通信作者),男,1986年出生,博士,研究员。主要研究方向为实验力学测量方法、装备检测与诊断分析。E-mail:zhuhaibin@ifet-tsinghua.org
  • 作者简介:易聪,男,1997年出生。主要研究方向为机械故障自动化诊断。E-mail:19S053042@stu.hit.edu.cn
  • 基金资助:
    国家自然科学基金(12072323,12002314)、浙江省自然科学基金重点项目(LZ22A020006)和电子元器件可靠性物理及其应用技术重点实验室开发基金(ZHD202104)资助项目。

Running Condition Identification of High-speed Shaft Based on Shaft-end-data Driven LSTM-CNN

YI Cong1,2, DU Jianjun1, YIN Jixiong2,3, ZHU Haibin2,3, DENG Weikun2,3, BAI Baoliang4, FU Congyi4   

  1. 1. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518000;
    2. Department of Testing and Equipment, Institute of Flexible Technology of THU, Jiaxing 314006;
    3. Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing 314006;
    4. New Technology Center, Zhejiang Heqing Flexible Electronics Company, Hangzhou 310000
  • Received:2021-12-22 Revised:2022-08-08 Online:2023-01-05 Published:2023-03-30

摘要: 针对复杂结构高速转轴运行状态难以准确实时监测与识别的问题,提出了一种基于转子系统数据驱动的复合神经网络转轴工况识别方法。首先,提出了一种基于长短期记忆网络(Long short-term memory,LSTM)和卷积神经网络(Convolutional neural networks,CNN)的复合神经网络模型(LSTM-CNN)。然后,建立双盘转子动力学仿真模型,并利用Newmark-β法对转子系统进行数值求解,获得转子系统关键固定节点动力学响应特征;同时基于有限元仿真获得关键旋转节点的动力学响应特征,并将两类数据分别导入LSTM-CNN模型中进行工况识别,并对其准确率和效率进行比较分析。最后,设计搭建高速转子实验平台,获取转子端和固定端数据分别对模型进行训练与验证,比较不同模型对高速转轴运行状态的识别能力。仿真数据与实验验证分析结果均表明基于转子端数据驱动的LSTM-CNN模型识别比传统的基于固定端数据驱动的识别方法具有更优的识别精度和效率。

关键词: 高速转轴, 原位在线测量, 复合神经网络, 运行状态识别

Abstract: Aiming at the problem that it is difficult to accurately real-time monitor and identify the running condition of high-speed shafts with complex structures, a composite neural network shaft running condition identification method based on the shaft-end-data driven is proposed. Firstly, a composite neural network model (LSTM-CNN) based on Long short-term memory (LSTM) and Convolutional neural networks (CNN) is proposed. A dual-disk shaft dynamics simulation model is then established. The Newmark-β method is used to numerically solve the shaft system for acquiring the dynamic response characteristics of the key fixed nodes of the shaft system; at the same time, the dynamic response characteristics of the key rotating nodes are obtained based on the finite element simulation. Two types of data are input into the LSTM-CNN model for running condition identification, and its accuracy and efficiency are compared and analyzed. Finally, a high-speed shaft experimental platform is designed and established, and the shaft-end data and fixed-end data are respectively used to train and test the LSTM-CNN model. The performance of different models for the running condition identification of the high-speed shaft is compared. Simulation and experimental verification analysis results show that the shaft-end-data driven LSTM-CNN have better running condition identification accuracy and efficiency than that based on the fixed-end-data driven.

Key words: high speed shaft, in-situ measurement, compound neural network, running condition identification

中图分类号: