[1] NORIOKA C, INAMOTO Y, HAJIME C, et al. A universal method to easily design tough and stretchable hydrogels[J]. NPG Asia Materials, 2021, 13(1): 34. [2] BAHCECIOGLU G, HASIRCI N, BILGEN B, et al. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus[J]. Biofabrication, 2019, 11(2): 025002. [3] WANG C, WANG M, XIA K, et al. A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury[J]. Bioactive Materials, 2021, 6(8): 2523-34. [4] YANG J, LIU Y, HE L, et al. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration[J]. Acta Biomater, 2018, 74: 156-67. [5] MAO Wei, LIAN Qin, LI Dichen, et al. 3D printing process for hydro gel with the three-dimensional micro tubes to mimic vascular network[J]. Journal of Mechanical Engineering, 2017, 53(9): 180-186. 毛伟, 连芩, 李涤尘, 等. 立体空心血管网水凝胶支架的3D打印工艺研究[J]. 机械工程学报, 2017, 53(9): 180-186. [6] LI H, TAN C, LI L. Review of 3D printable hydrogels and constructs[J]. Materials & Design, 2018, 159: 20-38. [7] HEINRICH M A, LIU W, JIMENEZ A, et al. 3D bioprinting: From benches to translational applications[J]. Small, 2019, 15(23): 1805510. [8] PAXTON N, SMOLAN W, BÖCK T, et al. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability[J]. Biofabrication, 2017, 9(4): 044107. [9] LEVATO R, JUNGST T, SCHEURING R, et al. From shape to function: The next step in bioprinting[J]. Advanced Materials, 2020, 32: 1906423. [10] LEI S, GAO Q, ZHAO H, et al. Fiber-based mini tissue with morphology-controllable gelma microfibers[J]. Small, 2018, 14: 1802187. [11] YIN J, YAN M, WANG Y, et al. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 6849-6857. [12] FOYT D, NORMAN M, YU T, et al. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine[J]. Advanced Healthcare Materials, 2018, 7(8): 1700939. [13] GU Heng, LIAN Qin, WANG Huichao, et al. Extrusion 3D printing processes and performance evaluation of GelMA composite hydrogel[J]. Journal of Mechanical Engineering, 2020, 56(1): 196-204. 顾恒, 连芩, 王慧超, 等. GelMA复合凝胶的挤出式3D打印工艺及其性能研究[J]. 机械工程学报, 2020, 56(1): 196-204. [14] OUYANG L, HIGHLEY C B, SUN W, et al. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks[J]. Advanced Materials, 2017, 29(8): 1604983. [15] SAMIMI GHARAIE S, DABIRI S, AKBARI M. Smart shear-thinning hydrogels as injectable drug delivery systems[J]. Polymers, 2018, 10: 1317. [16] QUINT J P, MOSTAFAVI A, ENDO Y, et al. In vivo printing of nanoenabled scaffolds for the treatment of skeletal muscle injuries[J]. Advanced Healthcare Materials, 2021, 10(10): 2002152. [17] GAO Q, NIU X F, SHAO L, et al. 3D printing of complex GelMA-based scaffolds with nanoclay[J]. Biofabrication, 2019, 11(3): 10. [18] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3): 678-689. [19] CIDONIO G, ALCALA-OROZCO C R, LIM K S, et al. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks[J]. Biofabrication, 2019, 11(3): 17. [20] SHIRAHAMA H, LEE B H, TAN L P, et al. Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis[J]. Scientific Reports, 2016, 6(1): 31036. [21] WU D, YU Y, TAN J, et al. 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity[J]. Materials & Design, 2018, 160: 486-495. [22] ZHU F, CHENG L, YIN J, et al. 3D printing of ultratough polyion complex hydrogels[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31304-10. [23] LEE B H, LUM N, SEOW L Y, et al. Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications[J]. Materials, 2016, 9(10): 797. [24] HUANG L, ZHU Z, WU D, et al. Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration[J]. Carbohydrate Polymers, 2019, 225: 115110. |