[1] ZHAO Cang, PARAB N, LI Xuxiao, et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 2020, 370: 1080-1086. [2] CUNNINGHAM R, ZHAO Cang, PARAB N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging[J]. Science, 2019, 363: 849-852. [3] TANG Zijue, LIU Weiwei, YAN Zhaorui, et al. Study on evolution behavior of geometrical accuracy based on dynamic characteristics of molten pool in laser-based direct energy deposition[J]. Journal of Mechanical Engineering, 2019, 55(15): 39-47. 唐梓珏, 刘伟嵬, 颜昭睿, 等. 基于熔池动态特征的金属激光熔化沉积形状精度演化行为研究[J]. 机械工程学报, 2019, 55(15): 39-47. [4] WANG Di, DENG Guowei, YANG Yongqiang, et al. Research progress on additive manufacturing of metallic heterogeneous materials[J]. Journal of Mechanical Engineering, 2021, 57(1): 186-198. 王迪, 邓国威, 杨永强, 等. 金属异质材料增材制造研究进展[J]. 机械工程学报, 2021, 57(1): 186-198. [5] YANG Yanhua. Analys of classifcations and characteristics of additive manufacturing (3DPrint)[J]. Advances in Aeronautical Science and Engineering, 2019, 10(3): 309-318. 杨延华. 增材制造(3D打印)分类及研究进展[J]. 航空工程进展, 2019, 10(3): 309-318. [6] LI Dichen, HE Jiankang, TIAN Xiaoyong, et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6): 129-135. 李涤尘, 贺健康, 田小永, 等. 增材制造: 实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6): 129-135. [7] VYAVAHARE S, TERAIYA S, PANGHAL D, et al. Fused deposition modelling: A review[J]. Ahead-of-Print, 2019, 26(1): 177-201. [8] ABBOT A C, TANDON G P, BRADFORD R L, et al. Process-structure-property effects on ABS bond strength in fused filament fabrication[J]. Additive Manufacturing, 2017, 19: 29-38. [9] FRENKEL J. Viscous flow of crystalline bodies under the action of surface tension[J]. Science of Sintering, 1945, 9(5): 501-559. [10] ESHELBY J D. Seminar on the kinetics of sintering[J]. JOM, 1949, 158(11): 796-813. [11] POKLUDA O, BELLEHUMEUR C T, VLACHOPOULOS J. Modification of frenkel's model for sintering[J]. Aiche Journal, 1997, 43(12): 3253-3256. [12] GURRALA P K, REGALLA S P. Part strength evolution with bonding between filaments in fused deposition modelling[J]. Virtual & Physical Prototyping, 2014, 9(3): 141-149. [13] BELLEHUMEUR C, LI Longmei, SUN Qian, et al. Modeling of bond formation between polymer filaments in the fused deposition modeling process[J]. Journal of Manufacturing Processes, 2004, 6(2): 170-178. [14] SUN Qian, RIZVI G M, BELLEHUMEUR C T, et al. Effect of processing conditions on the bonding quality of FDM polymer filaments[J]. Rapid Prototyping Journal, 2008, 14(2): 72-80. [15] BALANI S B, CHABERT F, NASSIET V, et al. Toward improvement of the properties of parts manufactured by FFF (fused filament fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon[C]//AIP Conference Proceedings, 2017, 1896(1): 040008. [16] CHAUNIER L, DELLA V G, LOURDIN D, et al. Viscous sintering kinetics of biopolymer filaments extruded for 3D printing[J]. Polymer Testing, 2019, 77: 1-6. [17] JIANG Shijie, SHI Yinfang, YANNICK S, et al. Investigation on the effect of road width on the inherent characteristics of FDM plates[J]. Journal of Mechanical Engineering, 2019, 55(15): 226-232. [18] FARAH S, ANDERSON D G, LANGER R. Physical and mechanical properties of PLA and their functions in widespread applications - a comprehensive review[J]. Advanced Drug Delivery Reviews, 2016, 107: 367-392. |