机械工程学报 ›› 2022, Vol. 58 ›› Issue (8): 27-53.doi: 10.3901/JME.2022.08.027
• 特邀专栏:机械装备的光纤传感检测与应用 • 上一篇 下一篇
李天梁, 郭金秀, 吴冬健, 谭跃刚, 周祖德
收稿日期:
2021-01-06
修回日期:
2021-12-05
出版日期:
2022-04-20
发布日期:
2022-06-13
通讯作者:
周祖德(通信作者),男,1946年出生,教授,博士研究生导师。主要研究方向为数字制造科学与技术、机械系统状态监测与故障诊断等。E-mail:zudezhou@whut.edu.cn
作者简介:
李天梁,男,1990年出生,博士,教授,博士研究生导师。主要研究现代机械测试理论与技术、先进光纤传感技术、机械装备动态监测以及医疗机器人。E-mail:tianliangliwhut@sina.com;郭金秀,男,1998年出生,硕士研究生。主要研究方向为光纤光栅监测技术、机械装备状态监测、医用传感器。E-mail:jinxiuguo@whut.edu.cn;吴冬健,男,1996年出生,硕士研究生。主要研究方向为光纤光栅监测技术、机械装备状态监测。E-mail:1318832149@qq.com;谭跃刚,男,1959年出生,博士,教授,博士研究生导师。主要研究方向为机器人技术、光纤光栅监测技术与应用等。E-mail:ygtan@whut.edu.cn
基金资助:
LI Tianliang, GUO Jinxiu, WU Dongjian, TAN Yuegang, ZHOU Zude
Received:
2021-01-06
Revised:
2021-12-05
Online:
2022-04-20
Published:
2022-06-13
摘要: 大型制造装备的安全运行关乎国民经济发展和国防建设,先进传感技术是实现超高/低温、超高压、强辐射、强磁场等极端环境下制造装备性能精准评估及其状态动态监测的重要支撑技术。光纤传感器凭借体积小、耐高温、抗腐蚀、抗电磁干扰、防爆、无源传感、易于实现多点分布式测量等优势,成为了极端环境下装备制造与运行状态监测的一项重要利器。围绕极端环境下基于极端参量光纤传感的装备制造与运行状态监测技术,归纳并总结极端参量光纤传感器的设计、制备、标定、误差补偿与应用的发展现状。介绍极端参量光纤传感器能量变换体设计方法与光纤信号调制机理,阐述光纤传感器零件的制造方法与封装工艺,并归纳光纤传感器标定校准技术与误差补偿方法。总结概述极端参量光纤传感监测技术在装备制造与运行状态监测方面的研究成果。探讨极端参量光纤传感技术的未来发展方向,并对全文进行总结。
中图分类号:
李天梁, 郭金秀, 吴冬健, 谭跃刚, 周祖德. 基于光纤传感的极端环境下装备制造与运行状态监测技术现状与发展[J]. 机械工程学报, 2022, 58(8): 27-53.
LI Tianliang, GUO Jinxiu, WU Dongjian, TAN Yuegang, ZHOU Zude. Recent Advances and Tendency of Optical Fiber Sensing Technology for Equipment Manufacturing and Operating States Monitoring in Extreme Environments[J]. Journal of Mechanical Engineering, 2022, 58(8): 27-53.
[1] 周祖德,谭跃刚,刘明尧,等.机械系统光纤光栅分布动态监测与诊断的现状与发展[J].机械工程学报,2013,49(19):55-69. ZHOU Zude,TAN Yuegang,LIU Mingyao,et al. Actualities and development on dynamic monitoring and diagnosis with distributed fiber bragg grating in mechanical systems[J]. Journal of Mechnical Engineering,2013,49(19):55-69. [2] BEHBAHANI A. Need for robust sensors for inherently fail-safe gas turbine engine controls,monitoring,and prognostics[C]//52nd International Instrumentation Symposium,Cleveland,OH,United States,2006. [3] 雷亚国,贾峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechnical Engineering,2018,54(5):94-104. [4] 尤政.智能传感器技术的研究进展及应用展望[J].科技导报,2016,34(17):72-78. YOU Zheng. Research progress and application prospect of smart sensor technology[J]. Science&Technology Review,2016,34(17):72-78. [5] JONATHAN S L,DONALD L S,SANJAY G,et al. A survey of intelligent control and health management technologies for aircraft propulsion systems[J]. Journal of Aerospace Computing,Information,and Communication,2004,1(12):543-563. [6] 周祖德.基于光纤光栅传感的大型机械装备监测系统研究[C]//湖北省装备制造业自主创新与发展研讨会,武汉,中国,2007. ZHOU Zude. Research on monitoring system of large mechanical Equipment based on fiber Bragg grating sensor[C]//Equipment Manufacturing Industry Independent Innovation and Development Seminar of Hubei Province,Wuhan,China,2007. [7] 张永芳,王霞,邢志国,等.面向机械装备健康监测的振动传感器研究现状[J].材料导报,2020,34(13):13121-13130. ZHANG Yongfang,WANG Xia,XING Zhiguo,et al. Research on vibration sensors for health monitoring of mechanical equipment[J]. Materials Reports,2020,34(13):13121-13130. [8] PROSSER W H,WU M C,ALLISON S G,et al. Structural health monitoring sensor development at NASA langley research center[R]. Hamp ton:NASA Langly Res Cent,2008:1-6. [9] 张国雄,裘祖荣.测试技术的社会作用及发展方向[J].工具技术,2004,38(9):13-23. ZHANG Guoxiong,QIU Zurong. The social function and development direction of testing technology[J]. Tool Technology,2004,38(9):13-23. [10] 戴军,黄春峰,毛茂华,等.航空发动机高温应变测量技术方法研究[C]//2014年航空试验测试技术峰会暨学术交流会,厦门,中国,2014. DAI Jun,HUANG Chunfeng,MAO Maohua,et al. Research on technical method of aero-engine high temperature strain measurement[C]//2014 Aviation Test Technology Summit and Academic Exchange Conference,Xiamen,China,2014. [11] CULLEY D Garg S,Hiller S J,et al. More intelligent gas turbine engines (Des turbomoteurs plus intelligents)[R]. more intelligent gas turbine engines,2019. [12] ZHOU Zude,JIANG Desheng,ZHANG Dongsheng. Digital monitoring for heavy duty mechanical equipment based on fiber Bragg grating sensor[J]. Science in China Series E:Technological Sciences,2009,52(2):285-293. [13] LI Tianliang,GUO Jinxiu,TAN Yuegang,et al. Recent advances and tendency in fiber bragg grating-based vibration sensor:A review[J]. IEEE Sensors Journal,2020,20(20):12074-12087. [14] 张小栋,谢思莹,牛杭,等.光纤动态监测技术的研究与进展[J].振动、测试与诊断,2015,35(3):409-416,585. ZHANG Xiaodong,XIE Siying,NIU Hang,et al. Research and development of optical fiber dynamic detection technology[J]. Journal of Vibration,Measurement&Diagnosis,2015,35(3):409-416,585. [15] 张向东,李育林,彭文达,等.布拉格光纤光栅及其在火箭状态监测中的应用探讨[J].激光杂志,2003,24(3):76-78. ZHANG Xiangdong,LI Yulin,PENG Wenda,et al. Fiber optic Bragg gratings and its applications on the condition monitoring system of the missile[J]. Laser Journal,2003,24(3):76-78. [16] JIANG Desheng,CHE Kajia,ZHOU Ciming,et al. Research and application of fiber Bragg grating safety monitoring method for huge structures and equipments[C]//Fiber Optic Sensors and Applications VII,2010. [17] TREGAY G W,CALABRESE P R,KAPLIN P L,et al. Optical fiber sensor for temperature measurement from 600 to 1900℃ in gas turbine engines[C]//Specialty Fiber Optic Systems for Mobile Platforms,BOSTON,MA,1991. [18] 邵飞,杨宁,孙维,等.基于光纤传感的航天器结构健康状态监测研究[J].航天器工程,2018,27(2):95-103. SHAO Fei,YANG Ning,SUN Wei,et al. Research on spacecraft structural health monitoring based on optical fiber sensing technology[J]. Spacecraft Engineering,2018,27(2):95-103. [19] SENG G T. Overview of NASA research in fiber optics for aircraft controls[J]. ISA Transactions,1989,28(2):25-29. [20] CHAN H M,PARKER A R,PIAZZA A,et al. Fiber-optic sensing system:Overview,development and deployment in flight at NASA[C]//Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP),2015. [21] 张卫方,何晶靖,阳劲松,等.面向飞行器结构的健康监控技术研究现状[J].航空制造技术,2017(19):38-47. ZHANG Weifang,HE Jingjing,YANG Jinsong,et al. Research status on structural health monitoring technology for aircraft structures[J]. Aeronautical Manufacturing Technology,2017(19):38-47. [22] STEPHENS C A,HUDSON L D,PIAZZA A. Overview of an advanced hypersonic structural concept test program[R]. Fundamental Aeronautics Program Annual Meeting,New Orleans,LA,United States,2007. [23] ECKE W,GRIMM S,LATKA I,et al. Optical fiber grating sensor network based on highly reliable fibers and components for spacecraft health monitoring[C/CD]//Smart Structures and Materials 2001:Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials,Newport Beach,CA,USA,2001. [24] PAKMEHR M,MOSLEHI B,COSTA J,et al. A review of fiber optic technology for turbine engine instrumentation channel:Control,PHM,and test cell applications[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,Cleveland,OH,2014. [25] DAI Yutang,YIN Guanglin,LIU Bin,et al. Medium-high frequency FBG accelerometer with integrative matrix structure[J]. Applied Optics,2015,54(11):3115-3121. [26] LI Ruiya,TAN Yuegang,HONG Liu,et al. A temperature-independent force transducer using one optical fiber with multiple Bragg gratings[J]. IEICE Electronics Express,2013,13(10):1-12. [27] 孙世政,廖超,李洁,等.基于光纤布拉格光栅的二维力传感器设计及实验研究[J].仪器仪表学报,2020,41(2):1-9. SUN Shizheng,LIAO Chao,LI Jie,et al. Design and experiment study of two-dimensional force sensor based on fiber Bragg grating[J]. Chinese Journal of Scientific Instrument,2020,41(2):1-9. [28] LIU Qinpeng,JIA Zhenan,FU Haiwei,et al. Double cantilever beams accelerometer using short fiber Bragg grating for eliminating Chirp[J]. IEEE Sensors Journal,2016,16(17):6611-6616. [29] AU H Y,KHIJWANIA S K,TAM H Y. Fiber Bragg grating based accelerometer[C]//19th International Conference on Optical Fibre Sensors,2008. [30] FENG Dingyi,QIAO Xueguang,YANG Hangzhou,et al. A fiber Bragg grating accelerometer based on a hybridization of cantilever beam[J]. IEEE Sensors Journal,2015,15(3):1532-1537. [31] ZHAN Yage,XUE Shaolin,YANG Qinyu,et al. A novel fiber Bragg grating high-temperature sensor[J]. Optik,2008,119(11):535-539. [32] LI Tianliang,SHI Chaoyang,REN Hongliang. A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution[J]. IEEE Photonics Technology Letters,2017,29(14):1199-1202. [33] TAN Yuegang,LI Tianliang,LIU Hu,et al. A temperature-insensitive FBG displacement sensor with a 10-nanometer-grade resolution[J]. IEICE Electronics Express,2018,15(17):1-12. [34] LIU Heliang,OR S W,TAM H Y. Magnetostrictive composite-fiber Bragg grating (MC-FBG) magnetic field sensor[J]. Sensors and Actuators A:Physical,2012,173(1):122-126. [35] LOPEZ J D,DANTE A,CREMONEZI A O,et al. Fiber-optic current sensor based on FBG and terfenol-d with magnetic flux concentration for enhanced sensitivity and linearity[J]. IEEE Sensors Journal,2020,20(7):3572-3578. [36] LI Ruiya,CHEN Yiyang,TAN Yuegang,et al. Sensitivity enhancement of FBG-based strain sensor[J]. Sensors,2018,18(5):1607. [37] LI Tianliang,TAN Yuegang,HAN Xue,et al. Diaphragm based fiber Bragg grating acceleration sensor with temperature compensation[J]. Sensors,2017,17(1):218-229. [38] LI Tianliang,SHI Chaoyang,TAN Yuegang,et al. A diaphragm type fiber Bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation[J]. IEEE Sensors Journal,2016,17(4):1021-1029. [39] LI Ruiya,TAN Yuegang,BING Junjun,et al. A diaphragm-type highly sensitive fiber Bragg grating force transducer with temperature compensation[J]. IEEE Sensors Journal,2017,18(3):1073-1080. [40] HEO J S,CHEUNG J H,LEE J J. Flexible force sensors using fiber Bragg grating[J]. Key Engineering Materials,2006,326:1343-1346. [41] XU Juncheng,PICKRELL G,WANG Xingwei,et al. A novel temperature-insensitive optical fiber pressure sensor for harsh environments[J]. IEEE Photonics Technology Letters,2005,17(4):870-872. [42] DAI Jixiang,YANG Minghong,YANG Zhi,et al. Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate[J]. Sensors and Actuators B:Chemical,2014,196:604-609. [43] SRIMANNARAYANA K,RAO P V,SHANKAR M S,et al. FBG sensor for temperature-independent high sensitive pressure measurement with aid of a Bourdon tube[C]//Conference on Optical Sensing and Detection III,Brussels,BELGIUM,2014. [44] SHI Chaoyang,LI Tianliang,REN Hongliang. A millinewton resolution fiber Bragg grating-based catheter two-dimensional distal force sensor for cardiac catheterization[J]. IEEE Sensors Journal,2018,18(4):1539-1546. [45] KHAN M M,PANWAR N,DHAWAN R. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation[J]. Sensors and Actuators A:Physical,2014,205:79-85. [46] ANTUNES P,VARUM H,ANDRé P. Uniaxial fiber Bragg grating accelerometer system with temperature and cross axis insensitivity[J]. Measurement,2011,44(1):55-59. [47] WEI Li,YU Lingling,WANG Jingjing,et al. An FBG-sensing two-dimensional vibration sensor based on multi-axis flexure hinge[J]. IEEE Sensors Journal,2019,19(10):3698-3710. [48] FISSER M,BADCOCK R A,TEAL P D,et al. High-sensitivity fiber-optic sensor for hydrogen detection in gas and transformer oil[J]. IEEE Sensors Journal,2019,19(9):3348-3357. [49] LIU Tiegen,YIN Jinde,JIANG Junfeng,et al. Differential-pressure-based fiber-optic temperature sensor using Fabry-Perot interferometry[J]. Optics Letters,2015,40(6):1049-1052. [50] LIANG Minfu,FANG Xinqiu,NING Yaosheng. Temperature compensation fiber Bragg grating pressure sensor based on plane diaphragm[J]. Photonic Sensors,2018,8(2):157-167. [51] QIU Lei,LIANG Lei,LI Dongxu,et al. Theoretical and experimental study on FBG accelerometer based on multi-flexible hinge mechanism[J]. Optical Fiber Technology,2017,38:142-146. [52] WEI Li,JIANG Dazhou,YU Lingling,et al. A novel miniaturized fiber Bragg grating vibration sensor[J]. IEEE Sensors Journal,2019,19(24):11932-11940. [53] THOMAS J,RAJANNA T R,ASOKAN S. Temperature compensated FBG displacement sensor for long-range applications[J]. IEEE Sensors Letters,2020,4(1):1-4. [54] ANTUNES P F C,MARQUES C A,VARUM H,et al. Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity[J]. IEEE Sensors Journal,2012,12(7):2399-2406. [55] LI Tianliang,SHI Chaoyang,REN Hongliang. Three-dimensional catheter distal force sensing for cardiac ablation based on fiber Bragg grating[J]. IEEE/ASME Transactions on Mechatronics,2018,23(5):2316-2327. [56] SONG Han,WANG Qidong,LIU Mingyao,et al. A novel fiber Bragg grating vibration sensor based on orthogonal flexure hinge structure[J]. IEEE Sensors Journal,2020,20(10):5277-5285. [57] LI Tianliang,TAN Yuegang,ZHOU Zude,et al. Pasted type distributed two-dimensional fiber Bragg grating vibration sensor[J]. Review of Scientific Instruments,2015,86(7):075009. [58] LI Tianliang,TAN Yuegang,ZHOU Zude. String-type based two-dimensional fiber bragg grating vibration sensing principle and structure optimization[J]. Sensors and Actuators A:Physical,2017,259:85-95. [59] LI Tianliang,SHI Chaoyang,REN Hongliang. A high-sensitivity tactile sensor array based on fiber Bragg grating sensing for tissue palpation in minimally invasive surgery[J]. IEEE/ASME Transactions on Mechatronics,2018,23(5):2306-2315. [60] GUO Yongxing,KONG Jianyi,LIU Honghai,et al. A three-axis force fingertip sensor based on fiber Bragg grating[J]. Sensors and Actuators A:Physical,2016,249:141-148. [61] NAN Qiuming,SONG Lei. Research on 3D fiber Bragg grating accelerometer[J]. Chinese Optics Letters,2014,12(A1):149-153. [62] LI Tianliang,TAN Yuegang,LIU Yi,et al. A fiber Bragg grating sensing based triaxial vibration sensor[J]. Sensors,2015,15(9):24214-24229. [63] GAO Anzhu,ZHOU Yuanyuan,CAO Lei,et al. Fiber Bragg grating-based triaxial force sensor with parallel flexure hinges[J]. IEEE Transactions on Industrial Electronics,2018,65(10):8215-8223. [64] DENG Yinan,YANG Tangwen,DAI Shaotao,et al. A miniature triaxial fiber optic force sensor for flexible ureteroscopy[J]. IEEE Transactions on Biomedical Engineering,2020,68(8):2339-2347. [65] MÜLLER M S,HOFFMANN L,CHRISTOPHER B T,et al. Fiber Bragg grating-based force-torque sensor with six degrees of freedom[J]. International Journal of Optomechatronics,2009,3(3):201-214. [66] XIONG Li,GUO Yongxing,JIANG Guozhang,et al. Six-dimensional force/torque sensor based on fiber Bragg gratings with low coupling[J]. IEEE Transactions on Industrial Electronics,2021,68(5):4079-4089. [67] 林金梅,潘锋,李茂东,等.光纤传感器研究[J].自动化仪表,2020,41(1):37-41.LIN Jinmei,PAN Feng,LI Maodong,et al. Research on optical fiber sensors[J]. Process Automation Instrumentation,2020,41(1):37-41. [68] 乔学光,邵志华,包维佳,等.光纤超声传感器及应用研究进展[J].物理学报,2017,66(7):191-209. QIAO Xueguang,SHAO Zhihua,BAO Weijia,et al. Fiber-optic ultrasonic sensors and applications[J]. Acta Physica Sinica,2017,66(7):191-209. [69] ZAWAWI M A,O'KEFFE S,LEWIS E. Intensity-modulated fiber optic sensor for health monitoring applications:A comparative review[J]. Sensor Review,2013,33(1):57-67. [70] GARCíA I,ZUBIA J,DURANA G,et al. Optical fiber sensors for aircraft structural health monitoring[J]. Sensors,2015,15(7):15494-15519. [71] KURKOV H S DHADWAL A P. Dual-laser probe measurement of blade-tip clearance[J]. Journal of Turbomachinery,1999,121(3):481-485. [72] JEFFRYES W C,JONATHAN K,TEN-HUEI G,et al. Integrated turbine tip clearance and gas turbine engine simulation[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference,Salt Lake City,UT,USA,2016. [73] GARCIA I,PRZYSOWA R,AMOREBIETA J,et al. Tip-clearance measurement in the first stage of the compressor of an aircraft engine[J]. Sensors (Basel),2016,16(11):1897. [74] GARCIA I,BELOKI J,ZUBIA J,et al. An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig[J]. Sensors (Basel),2013,13(6):7385-7398. [75] GUO H,DUAN F,WU G,et al. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system[J]. Review of Scientific Instruments,2014,85(11):115105. [76] CAO S Z,DUAN F J,ZHANG Y G. Measurement of rotating blade tip clearance with fibre-optic probe[J]. Journal of Physics:Conference Series,2006,48(1):873-877. [77] ZHANG X,XIONG Y,XIE S,et al. Optical-fiber-based dynamic measurement system for 3D tip clearance of rotating blades[J]. Optics express,2019,27(22):32075-32095. [78] DI Haiting,XIN Ying,JIAN Jinquan. Review of optical fiber sensors for deformation measurement[J]. Optik,2018,168:703-713. [79] 郭振武,李维祥,孙桂玲.基于F-P腔和FBG的强度调制型光纤液位传感器[J].光学技术,2007,33(C1):120-122. GUO Zhenwu,LI Weixiang,SUN Guiling. Optical fiber liquid level sensor based on F-P interferometer and FBG[J]. Optical Technique,2007,33(C1):120-122. [80] LI Tianliang,PAN Anqi,REN Hongliang. A high-resolution tri-axial catheter-tip force sensor with miniature flexure and suspended optical fibers[J]. IEEE Transactions on Industrial Electronics,2020,67(6):5101-5111. [81] 徐海伟,曾捷,梁大开,等.基于光纤传感网络的可变体机翼应变场数值模拟及实验验证[J].航空学报,2011,32(10):1842-1850. XU Haiwei,ZENG Jie,LIANG Dakai,et al. Numerical simulation and experimental study of strain field for morphing wings based on distributed fiber bragg grating sensor network[J]. Acta Aeronautica et Astronautica Slinica,2011,32(10):1842-1850. [82] PARK S O,MOON J B,LEE Y G,et al. Usage of fiber Bragg grating sensors in low earth orbit environment[C/CD]//Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems 2008,San Diego,California,2008. [83] MIZUTANI T,TAKEDA N,TAKEYA H. On-board strain measurement of a cryogenic composite tank mounted on a reusable rocket using FBG sensors[J]. Structural Health Monitoring,2006,5(5):205-214. [84] WU Wei,LIU Xin. Investigation on high temperature characteristics of FBG sensors[J]. Optik,2015,126(20):2411-2413. [85] RINAUDO P,PAYA-ZAFORTEZA I,CALDERóN P,et al. Experimental and analytical evaluation of the response time of high temperature fiber optic sensors[J]. Sensors and Actuators A:Physical,2016,243:167-174. [86] 薛渊泽,王学锋,罗明明,等.再生光纤布拉格光栅的研究进展[J].激光与光电子学进展,2018,55(2):69-78. XUE Yuanze,WANG Xuefeng,LUO Mingming,et al. Review of regenerated fiber Bragg grating[J]. Laser&Optoelectronics Progress,2018,55(2):69-78. [87] 李宏业,饶斌裕,赵晓帆,等.基于飞秒激光刻写光纤光栅的研究进展[J].激光与光电子学进展,2020,57(11):264-281. LI Hongye,RAO Binyu,ZHAO Xiaofan,et al. Development of fiber gratings inscribed by femtosecond laser[J]. Laser&Optoelectronics Progress,2020,57(11):264-281. [88] BANDYOPADHYAY S,CANNING J,STEVENSON M,et al. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm[J]. Optics Letters,2008,33(16):1917-1919. [89] YANG S,HOMA D,PICKRELL G,et al. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber[J]. Optics Letters,2018,43(1):62-65. [90] ZHAO Yong,LV Riqing,WANG Dan,et al. Fiber optic fabry-perot magnetic field sensor with temperature compensation using a fiber Bragg grating[J]. IEEE Transactions on Instrumentation and Measurement,2014,63(9):2210-2214. [91] YI Jihaeng,LALLY Evan,WANG Anbo,et al. Demonstration of an all-sapphire Fabry-Pérot cavity for pressure sensing[J]. IEEE Photonics Technology Letters,2010,23(1):9-11. [92] MILLS D A,ALEXANDER D,SUBHASH G,et al. Development of a sapphire optical pressure sensor for high-temperature applications[C]//Sensors for Extreme Harsh Environments,Baltimore,MD,2014. [93] PECHSTEDT R D. Fibre optic pressure and temperature sensor for applications in harsh environments[C]//Fifth European Workshop on Optical Fibre Sensors,2013. [94] JIANG Junfeng,LIU Tiegen,LIU Kun,et al. Development of optical fiber sensing instrument for aviation and aerospace application[C]//2013 International Conference on Optical Instruments and Technology:Optical Sensors and Applications,Krakow,POLAND,2013. [95] YI Jihaeng. Adhesive-free bonding of monolithic sapphire for pressure sensing in extreme environments[J]. Sensors,2018,18(8):2712-2780. [96] XIA Ping,TAN Yuegang,LI Tianliang,et al. A High-temperature resistant photonic crystal fiber sensor with single-side-sliding fabry-perot cavity for super-large strain measurement[J]. Sensors and Actuators A:Physical 2020. [97] YANG Shuo,FENG Ziang,JIA Xiaoting,et al. All-sapphire miniature optical fiber tip sensor for high temperature measurement[J]. Journal of Lightwave Technology,2020,38(7):1988-1997. [98] MULLER G M,FRANK A,YANG Lin,et al. Temperature compensation of interferometric and polarimetric fiber-optic current sensors with spun highly birefringent fiber[J]. Journal of Lightwave Technology,2019,37(18):4507-4513. [99] AHMAD H,LIM H S,MATJAFRI M Z,et al. All-fiber optical polarization modulation system using MoS2 as modulator[J]. Infrared Physics&Technology,2019,102:103002. [100] LI Xuefeng,ZHANG Han,QIAN Chunya,et al. A new type of structure of optical fiber pressure sensor based on polarization modulation[J]. Optics and Lasers in Engineering,2020,130:106095-106100. [101] 郑小平,廖延彪.偏振调制光纤传感器长期稳定性研究现状[J].激光与红外,1999,29(6):363-367. ZHENG Xiaoping,LIAO Yanbiao. Study actuality in long erm stability of fiber optic sensor based on polarization modulation[J]. Laser&Infrared,1999,29(6):363-367. [102] PFISTER T,BüTTNER L,CZARSKE J,et al. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor[J]. Measurement Science and Technology,2006,17(7):1693-1705. [103] ANSARI Farhad. Practical implementation of optical fiber sensors in civil structural health monitoring[J]. Journal of Intelligent Material Systems and Structures,2007,18(8):879-889. [104] 李自亮,廖常锐,刘申,等.光纤法布里-珀罗干涉温度压力传感技术研究进展[J].物理学报,2017,66(7):104-120. LI Ziliang,LIAO Changrui,LIU Shen,et al. Research progress of in-fiber Fabry-Perot interferometric temperature and pressure sensors[J]. Acta Physica Sinica,2017,66(7):104-120. [105] DINOVITZER H A,LARONCHE A,ALBERT J. Fiber Bragg grating high impact force sensors with adjustable sensitivity and dynamic range[J]. IEEE Sensors Journal,2019,19(14):5670-5679. [106] NAWROT U,GEERNAERT T,DE PAUW B,et al. Development of a mechanical strain amplifying transducer with Bragg grating sensor for low-amplitude strain sensing[J]. Smart Materials and Structures,2017,26(7). [107] 周贤,杨沫,明兴祖,等.不同银含量的Pd-Ag复合膜微结构光栅光纤氢气传感特性[J].光子学报,2019,48(8):89-97. ZHOU Xian,YANG Mo,MING Xingzu,et al. Hydrogen sensing characteristics of Pd-Ag composite film micro-structured grating fiber with different silver content[J]. Acta Photonica Sinica,2019,48(8):89-97. [108] DAI Yutang,YANG Minghong,XU Gang,et al. Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser[J]. Optics Express,2013,21(14):17386-17391. [109] KARANJA J M,DAI Yutang,ZHOU Xian,et al. Femtosecond laser ablated FBG multitrenches for magnetic field sensor application[J]. IEEE Photonics Technology Letters,2015,27(16):1717-1720. [110] ZHOU Xian,DAI Yutang,ZOU Meng,et al. FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser[J]. Sensors and Actuators B:Chemical,2016,236:392-398. [111] KOU Junlong,FENG Jing,YE Liang. Miniaturized fiber taper reflective interferometer for high temperature measurement[J]. Optics express,2010,18(13):14245-14250. [112] SAAD S,HASSINE L. Hydrogen detection with FBG sensor technology for disaster prevention[J]. Photonic Sensors,2013,3(3):214-223. [113] XIANG Feng,WANG Gaopeng,QIN Yuhuan,et al. Improved performance of fiber Bragg hydrogen sensors assisted by controllable optical heating system[J]. IEEE Photonics Technology Letters,2017,29(15):1233-1236. [114] 褚东凯,孙小燕,董欣然,等.飞秒激光改性区选择性化学腐蚀加工光纤微纳结构传感器[J].科学通报,2016,61(6):576-584. CHU Dongkai,SUN Xiaoyan,DONG Xinran,et al. The fabrication of micro-nano structure optical fiber sensor used by femtosecond laser in combination with selective chemical etching[J]. Chinese Science Bulletin,2016,61(6):576-584. [115] JIANG Jun,MA Guoming,LI Chengrong,et al. Highly sensitive dissolved hydrogen sensor based on side-polished fiber Bragg grating[J]. IEEE Photonics Technology Letters,2015,27(13):1453-1456. [116] LIU Shujing,JIN Long,JIN Wei,et al. Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser[J]. Optics Express,2010,18(6):5496. [117] TANG Guoyu,WEI Jue,ZHOU Wei,et al. Multi-hole plastic optical fiber force sensor based on femtosecond laser micromachining[J]. Chinese Optics Letters,2014,12(9):090604-90608. [118] MIHAILOV S J,GROBNIC D,HNATOVSKY C,et al. Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings[J]. Sensors (Basel),2017,17(12):10.3390/s17122909. [119] 刘斌,戴玉堂,周贤,等.均分直槽微结构光纤光栅磁场传感器[J].光电子·激光,2015,26(10):1860-1865. LIU Bin,DAI Yutang,ZHOU Xian,et al. Magnetic field FBG sensor with even straight-trenches microstruc-ture[J]. Journal of Optoelectronics·Laser,2015,26(10):1860-1865. [120] RAO Yunjiang,RAN Zengling. Optic fiber sensors fabricated by laser-micromachining[J]. Optical Fiber Technology,2013,19(6):808-821. [121] COELHO M P,NESPEREIRA M,SILVA C,et al. Advances in optical fiber laser micromachining for sensors development[M]. London:IntechOpen,2013. [122] QI Xiaoguang,WANG Shuang,JIANG Junfeng,et al. Fiber optic fabry-perot pressure sensor with embedded MEMS micro-cavity for ultra-high pressure detection[J]. Journal of Lightwave Technology,2019,37(11):2719-2725. [123] GE Yixian,WANG Ming,YAN Haitao. Optical MEMS pressure sensor based on a mesa-diaphragm structure[J]. Optics Express,2009,16(26):21746-21752. [124] ABEYSINGHE D C,DASGUPTA S,JACKSON H E,et al. Novel MEMS pressure and temperature sensors fabricated on optical fibers[J]. Journal of Micro Mechanics and Micro Engineering,2002,12(3):229-235. [125] DONLAGIC D,CIBULA E. All-fiber high-sensitivity pressure sensor with SiO2 diaphragm[J]. Optics letters,2005,30(16):2071-2073. [126] 戴玉堂,周广福,李涛,等.基于飞秒激光微加工的光纤磁场传感器[J].光学学报,2013,33(12):52-56. DAI Yutang,ZHOU Guangfu,LI Tao,et al. Fiber optic magnetic field sensor based on femtosecond laser micromachining[J]. Acta Optica Sinica,2013,33(12):52-56. [127] FISSER M,BADCOCK R A,TEAL P D,et al. Palladium-based hydrogen sensors using fiber Bragg gratings[J]. Journal of Lightwave Technology,2018,36(4):850-856. [128] 张晓晶,张博明,陈吉安,等.基于镀钯薄膜的微悬臂梁型光纤光栅氢传感器的设计和制备[J].中国激光,2010,37(7):1784-1788. ZHANG Xiaojing,ZHANG Boming,CHEN Jian,et al. Design and fabrication of micro-cantilever beam fiber Bragg grating hydrogen sensor based on coated-palladium film[J]. Chinese Journal of Lasers,2010,37(7):1784-1788. [129] LI Zhi,YANG Minghong,DAI Jixiang,et al. Optical fiber hydrogen sensor based on evaporated Pt/WO3 film[J]. Sensors and Actuators B:Chemical,2015,206:564-569. [130] 李娟妮,周红,贾振安,等.一种二次镀银光纤光栅气敏传感器[J].光电子·激光,2017,28(3):233-237. LI Juanni,ZHOU Hong,JIA Zhenan,et al. A double-plating silver FBG gas sensor[J]. Journal of Optoelectronics·Laser,2017,28(3):233-237. [131] ZHENG Xing,HU Wenbin,ZHANG Ning,et al. Optical corrosion sensor based on fiber Bragg grating electroplated with Fe-C film[J]. Optical Engineering,2014,53(7):077104. [132] XU Ben,LI Ping,WANG D N,et al. Hydrogen sensor based on polymer-filled hollow core fiber with Pt-loaded WO3/SiO2 coating[J]. Sensors and Actuators B:Chemical,2017,245:516-523. [133] ZHOU Xian,DAI Yutang,LIU Fufei,et al. Highly sensitive and rapid FBG hydrogen sensor using Pt-WO3 with different morphologies[J]. IEEE Sensors Journal,2018,18(7):2652-2658. [134] ZHOU Xian,DAI Yutang,KARANJA J M,et al. Microstructured FBG hydrogen sensor based on Pt-loaded WO3[J]. Optics Express,2017,25(8):8777-8786. [135] WANG Zechao,LIU Mingyao,QU Yongzhi,et al. An FBG based smart clamp fabricated by 3D printing technology and its application to incipient clamp looseness detection[C/CD]//2019 IEEE International Conference on Prognostics and Health Management (ICPHM) San Francisco,USA,2019. [136] IGREC B,BOSILJEVAC M,RUDAN S,et al. Fiber-optic vibration sensor for high-power electric machines[C/CD]//201538th International Convention on Information and Communication Technology,Electronics and Microelectronics (MIPRO),San Francisco,USA,2015. [137] FANG Liang,CHEN Tao,LI Ruiya,et al. Application of embedded fiber Bragg grating (FBG) sensors in monitoring health to 3D printing structures[J]. IEEE Sensors Journal,2016,16(17):6604-6610. [138] SINGH S,RAMAKRISHNA S,SINGH R. Material issues in additive manufacturing:A review[J]. Journal of Manufacturing Processes,2017,25:185-200. [139] HUANG S H,LIU Peng,MOKASDAR A,et al. Additive manufacturing and its societal impact:a literature review[J]. The International Journal of Advanced Manufacturing Technology,2012,67(5-8):1191-1203. [140] LEAL-JUNIOR A G,MARQUES C,RIBEIRO M R N,et al. FBG-embedded 3-D printed ABS sensing pads the impact of infill density on sensitivity and dynamic range in force sensors[J]. IEEE Sensors Journal,2018,18(20):8381-8388. [141] LIN Yingkai,HSIEH T S,TSAI L,et al. Using three-dimensional printing technology to produce a novel optical fiber Bragg grating pressure sensor[J]. Sensors and Materials,2016,28(5):389-394. [142] BÜTZER T L,RINDERKNECHT M D,JOHANNES G H,et al. Design and evaluation of a fiber-optic grip force sensor with compliant 3D-printable structure for (f) MRI applications[J]. Journal of Sensors,2016,2016:1-11. [143] LI Tianliang,KING N K K,REN Hongliang. Disposable FBG-based tridirectional force/torque sensor for aspiration instruments in neurosurgery[J]. IEEE Transactions on Industrial Electronics,2020,67(4):3236-3247. [144] LI Tianliang,PAN Anqi,REN Hongliang. Reaction force mapping by 3-axis tactile sensing with arbitrary angles for tissue hard-inclusion localization[J]. IEEE Transactions on Biomedical Engineering,2021,68(1):26-35. [145] SAAD S,HASSINE L,ELFAHEM W. Hydrogen FBG sensor using Pd/Ag film with application in propulsion system fuel tank model of aerospace vehicle[J]. Photonic Sensors,2014,4(3):254-264. [146] XU Yanping,LU Ping,CHEN Liang,et al. Recent developments in micro-structured fiber optic sensors[J]. Fibers,2017,5(1):3. [147] LEE B,ROH S,PARK J. Current status of micro-and nano-structured optical fiber sensors[J]. Optical Fiber Technology,2009,15(3):209-221. [148] NAZEMI H,JOSEPH A,PARK J,et al. Advanced micro-and nano-gas sensor technology:A review[J]. Sensors,2019,19(6):1285. [149] 李婷,乔学光,王宏亮,等.光纤光栅传感器的聚合物封装增敏技术[J].光通信技术,2005(12):39-41. LI Ting,QIAO Xueguang,WANG Hongliang,et al. Polymer encapsulation sensitization technology for fiber Bragg grating sensors[J]. Optical Communication Technology,2005(12):39-41. [150] 刘士华,陈涛,李瑞亚,等.基片式FBG温度传感器胶粘贴效果对其性能影响的研究[J].光电子·激光,2016,27(7):692-698. LIU Shihua,CHEN Tao,LI Ruiya,et al. Research on the influence of adhesive stick effect on the perform-ance of substrate FBG temperature sensor[J]. Journal of Optoelectronics·Laser,2016,27(7):692-698. [151] 王敏.耐温有机胶粘剂的发展现状[J].中国胶粘剂,2007,16(3):45-49. WANG Min. The progress and current situation of heat-resistant organic adhesives[J]. China Adhesives,2007,16(3):45-49. [152] 魏晓莹,王汝敏,闫超,等.改性耐高温胶粘剂的研究进展[J].中国胶粘剂,2010,19(5):54-58. WEI Xiaoying,WANG Rumin,YAN Chao,et al. Research progress of modified adhesives for high-temperature resistance[J]. China Adhesives,2010,19(5):54-58. [153] 董柳杉,罗瑞盈.耐高温胶黏剂的研究进展[J].炭素技术,2013,32(3):52-56. DONG Liushan,LUO Ruiying. Research progress of high temperature resistant adhesive[J]. Carbon Techniques,2013,32(3):52-56. [154] DU Chong,XIE Weihua,MENG Songhe,et al. The connection technology based on high temperature silica fiber optic sensor[C]//Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems 2012,2012. [155] 李天梁,谭跃刚,张翔,等.受弯件上粘贴型光纤布拉格光栅的应变传递规律[J].光学(精密工程),2015,23(5):1254-1264. LI Tianliang,TAN Yuegang,ZHANG Xiang,et al. Strain transfer factors of pasted FBG on bending part surface[J]. Optics and Precision Engineering,2015,23(5):1254-1264. [156] LI Kuo. Review of the strain modulation methods used in fiber Bragg grating sensors[J]. Journal of Sensors,2016,2016:1-8. [157] KIM S W,JEONG M S,LEE I,et al. Determination of the maximum strains experienced by composite structures using metal coated optical fiber sensors[J]. Composites Science and Technology,2013,78:48-55. [158] 孟丽君.超声激励-光纤光栅传感检测技术的相关理论与应用研究[D].武汉:武汉理工大学,2013. MENG Lijun. Theory and application of detection technology based on ultrasonic excitation and fiber Bragg gratings sensing[D]. Wuhan:Wuhan University of Technology,2013. [159] NGOI B K A,PAUL J,ZHAO L P,et al. Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging[J]. Optics Communications,2004,242(4-6):425-430. [160] SCHULZ W L,CONTE J P,UDD E. Long-gage fiber optic Bragg grating strain sensors to monitor civil structures[J]. Proceedings of SPIE-The International Society for Optical Engineering,2001,4330(1):56-65. [161] HER S C,TSAI C Y. Strain measurement of fiber optic sensor surface bonding on host material[J]. Transactions of Nonferrous Metals Society of China,2009,19:s143-s149. [162] 文庆珍,苑秉成,黄俊斌.光纤光栅压力传感器封装增敏技术[J].海军工程大学学报,2005,17(3):1-4. WEN Qingzhen,YUAN Bingcheng,HUANG Junbin. Press sensitivity enhancing package technique for fiber Bragg grating sensor[J]. Journal of Naval University of Engineering,2005,17(3):1-4. [163] LI Tianliang,TAN Yuegang,ZHOU Zude,et al. Research on pasted FBG-based accelerometer's sensitization process method and its characteristics[J]. IEICE Electronics Express,2015,12(17):20150583-20150583. [164] WANG Huaping,XIANG Ping. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure[J]. Measurement Science and Technology,2016,27(7):075106. |
[1] | 孙广开, 张兴硕, 何彦霖, 周康鹏, 祝连庆. 面向连续体机器人精密操作的多芯光纤三维形状与位置测量误差研究[J]. 机械工程学报, 2024, 60(3): 68-82. |
[2] | 尹国路, 蒋锐, 徐州, 周雷, 牛洋洋, 吕雷, 朱涛. 快速、高空间分辨分布式光纤传感技术及其在机械形变和温度监测中的应用[J]. 机械工程学报, 2022, 58(8): 96-104. |
[3] | 周祖德, 姚碧涛, 谭跃刚, 刘明尧, 李天梁, 魏勤. 光纤传感在制造领域应用的分析与思考[J]. 机械工程学报, 2022, 58(8): 3-26. |
[4] | 林启敬, 伍子荣, 赵娜, 田边, 蒋庄德. 用于航空发动机的光纤F-P温度传感器及其信号解调系统研究[J]. 机械工程学报, 2019, 55(18): 1-7. |
[5] | 周祖德;谭跃刚;刘明尧;杨文玉;李正颖. 机械系统光纤光栅分布动态监测与诊断的现状与发展[J]. , 2013, 49(19): 55-69. |
[6] | 杨叔子;史铁林. 以人为本——树立制造业发展的新观念[J]. , 2008, 44(7): 1-5. |
[7] | 侯芳;韩雷. 光纤传感网络用于电磁流结构的特性测试与工程控制[J]. , 2000, 36(8): 107-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||