机械工程学报 ›› 2022, Vol. 58 ›› Issue (8): 96-104.doi: 10.3901/JME.2022.08.096
• 特邀专栏:机械装备的光纤传感检测与应用 • 上一篇 下一篇
尹国路1,2, 蒋锐1, 徐州1, 周雷1, 牛洋洋1, 吕雷1, 朱涛1,2
收稿日期:
2021-01-15
修回日期:
2021-12-05
出版日期:
2022-04-20
发布日期:
2022-06-13
作者简介:
尹国路,男,1985年出生,博士,研究员,博士研究生导师。主要研究方向为智能光纤传感技术。E-mail:glyin@cqu.edu.cn
基金资助:
YIN Guolu1,2, JIANG Rui1, XU Zhou1, ZHOU Lei1, NIU Yangyang1, Lü Lei1, ZHU Tao1,2
Received:
2021-01-15
Revised:
2021-12-05
Online:
2022-04-20
Published:
2022-06-13
摘要: 针对未来智能变体飞行器飞行途中机翼形变监测、微创手术中精准介入手术、连续体机器人自动运动轨迹追踪、涡轮叶片温度监测等对抗电磁干扰、精度高、质量轻的分布式传感技术需求,研制了基于光频域反射仪的快速、高空间分辨率分布式光纤传感样机。该样机采用辅助干涉仪的外差拍频信号作为外部时钟,辅助干涉仪选用300 m的延迟光纤,抑制了光源非线性扫频效应,利用偏振分集接收装置消除系统中的偏振衰落效应。在40 m传感距离内对CPU和GPU运算时间成本进行了对比,采用GPU加速算法将光频域反射仪的传感速度提升了20倍。对涡轮叶片温度进行监测,其传感采样空间分辨率达到0.76 mm,温度测量精度达到0.4℃。采用该样机实现了二维柔性面板机械形变监测,测量误差低于3%。
中图分类号:
尹国路, 蒋锐, 徐州, 周雷, 牛洋洋, 吕雷, 朱涛. 快速、高空间分辨分布式光纤传感技术及其在机械形变和温度监测中的应用[J]. 机械工程学报, 2022, 58(8): 96-104.
YIN Guolu, JIANG Rui, XU Zhou, ZHOU Lei, NIU Yangyang, LÜ Lei, ZHU Tao. Fast and High Spatial Resolution Distributed Optical Fiber Sensing Technology and Its Application in Mechanical Deformation and Temperature Monitoring[J]. Journal of Mechanical Engineering, 2022, 58(8): 96-104.
[1] 周祖德,谭跃刚,刘明尧,等.机械系统光纤光栅分布动态监测与诊断的现状与发展[J].机械工程学报, 2013,49(19):55-69. ZHOU Zude,TAN Yuegang,LIU Mingyao,et al. Actualities and development on dynamic monitoring and diagnosis with distributed fiber bragg grating in mechanical systems[J]. Journal of Mechanical Engineering,2013,49(19):55-69. [2] 张晗,杜朝辉,方作为,等.基于稀疏分解理论的航空发动机轴承故障诊断[J].机械工程学报,2015,51(1):97-105. ZHANG Han,DU Zhaohui,FANG Zuowei,et al. Sparse decomposition based aero-engine's bearing fault diagnosis[J]. Journal of Mechanical Engineering,2015,51(1):97-105. [3] 朱华,刘卫东,赵淳生.变体飞行器及其形驱动技术[J].机械制造与自动化,2010,39(2):8-14,125. ZHU Hua,LIU Weidong,ZHAO Chunsheng. Variant aircraft and its shape drive technology[J]. Machinery Manufacturing and Automation,2010,39(2):8-14,125. [4] 张音旋,陈亮,吴江鹏,等.变弯度机翼后缘的研究进展及其关键技术[J].飞机设计,2017,37(6):34-39. ZHANG Yinxuan,CHEN Liang,WU Jiangping,et al. Research progress and key technologies of variable camber wing trailing edge[J]. Aircraft Design,2017,37(6):34-39. [5] 徐国权,熊代余.光纤光栅传感技术在工程中的应用[J].中国光学,2013,6(3):306-317. XU Guoquan,XIONG Daiyu. Application of fiber grating sensing technology in engineering[J]. Chinese Optics,2013,6(3):306-317. [6] 张俊康,孙广开,李红,等.变形机翼薄膜蒙皮形状监测光纤传感方法研究[J].仪器仪表学报,2018,39(2):66-72. ZHANG Junkang,SUN Guangkai,LI Hong,et al. Research on the optical fiber sensing method for shape monitoring of deformable wing thin film skin[J]. Chinese Journal of Scientific Instrument,2018,39(2):66-72. [7] 黄居坤,王勇,曾捷,等.空间伸展臂热应变与热变形光纤监测技术[J].上海航天,2020,37(1):70-78. HUANG Jukun,WANG Yong,ZENG Jie,et al. Optical fiber monitoring technology for thermal strain and thermal deformation of space extension arm[J]. Shanghai Aerospace,2020,37(1):70-78. [8] ZHENG Hua,FENG Danqi,et al. Distributed vibration measurement based on a coherent multi-slope-assisted BOTDA with a large dynamic range[J]. Opticals Letters,2019,44(5):1245-1248. [9] BA Dexin,CHEN Chen,FU Cheng,et al. A high-performance and temperature-insensitive shape sensor based on DPP-BOTDA[J]. IEEE Photonics Journal,2018,10(1):7100810. [10] ZHENG Hua,ZHANG Jingdong,ZHU Tao,et al. Polarization independent fast BOTDA based on pump frequency modulation and cyclic coding[J]. Optics Express,2018,26(14):18270-18278. [11] LUO Mingming,LIU Jianfei,TANG Caijie,et al. 0.5 mm spatial resolution distributed fiber temperature and strain sensor with position-deviation compensation based on OFDR[J]. Optics Express,2019,27(24):35823. [12] 赵士元,崔继文,陈勐勐.光纤形状传感技术综述[J].光学精密工程,2020,28(1):10-29. ZHAO Shiyuan,CUI Jiwen,CHEN Mengmeng. Summary of optical fiber shape sensing technology[J]. Optics and Precision Engineering,2020,28(1):10-29. [13] 薛慧如,马秀荣,单云龙.基于OFDR光纤振动传感器解调算法的研究及改进[J].光通信技术,2019,43(6):9-12. XUE Huiru,MA Xiurong,SHAN Yunlong. Research and improvement of demodulation algorithm based on OFDR optical fiber vibration sensor[J]. Optical Communication Technology,2019,43(6):9-12. [14] YIN Guolu,LU Lei,ZHOU Lei,et al. Distributed directional torsion sensing based on an optical frequency domain reflectometer and a helical multicore fiber[J]. Optics Express,2020,28(11):16140-16150. [15] DAICHI W D,IGAWA H,TAMAYAMA M,et al. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system[J]. Smart Materials and Structures,2018,27(2):025014. [16] LU P,BURIC M P,BYERLY K,et al. Real-time monitoring of temperature rises of energized transformer cores with distributed optical fiber sensors[J]. IEEE Transaction on Power Delivery,2019,34(4):1588-1598. [17] 仇唐国,孙阳阳,卢天鸣,等.基于OFDR技术的深层土体水平位移场监测研究[J].压电与声光,2020,42(1):108-112. CHOU Tangguo,SUN Yangyang,LU Tianming,et al. Research on monitoring of horizontal displacement field of deep soil based on OFDR technology[J]. Piezoelectric and Acousto-optic,2020,42(1):108-112. [18] 杨岗,王梓丞,易立富,等.一种基于OFDR的高速磁浮列车定位系统[J].通信与信息技术,2020(5):70-72,85. YANG Gang,WANG Zicheng,YI Lifu,et al. A high-speed maglev train positioning system based on OFDR[J]. Communication and Information Technology,2020(5):70-72,85. [19] SHAO Cong,YIN Guolu,LÜ Lei,et al. OFDR with local spectrum matching method for optical fiber shape sensing[J]. Applied Physics Express,2019,12(8):082010. [20] 吕雷.基于光频域反射仪和螺旋光纤的分布式扭曲传感研究[D].重庆:重庆大学,2020.6. LÜ Lei. Research on the distributed torsion sensing based on optical frequency domain reflectometry and helical fiber[D]. Chongqing:Chongqing University,2020. [21] 张新华.基于光纤光栅的结构形状传感技术研究[D].南京:南京航空航天大学,2018. ZHANG Xinhua. Research on shape sensing technology of structure by FBG[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018. [22] 刘子叶.基于分布式应变测量的光纤形状传感研究[D].哈尔滨:哈尔滨理工大学,2018. LIU Ziye. Fiber shape sensing based on distributed strain measurement[D]. Harbin:Harbin University of Technology,2018. |
[1] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[2] | 傅杨, 张跃, 毛颖, 唐小华, 陈祖高, 徐和武, 杨雨沛, 高斌, 田贵云. 基于Feature Boosting的管道电磁内检测多传感信号缺陷解析算法[J]. 机械工程学报, 2024, 60(20): 51-67. |
[3] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[4] | 张志勇, 王宇翔, 黄彩霞, 吴悠, 杜荣华. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报, 2024, 60(20): 240-250. |
[5] | 廖贵文, 张毅, 魏凯, 刘小君, 王伟. 受限润滑界面液固二相流场结构与颗粒运动行为耦合特性分析[J]. 机械工程学报, 2024, 60(20): 351-360. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 王德祥, 张宇, 江京亮, 刘新福, 刘国梁. 离子液基和棕榈油基纳米流体在镍基高温合金微量润滑磨削界面的摩擦学机理研究[J]. 机械工程学报, 2024, 60(19): 159-171. |
[8] | 李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186. |
[9] | 王晓宇, 魏兆成, 王学勤, 王栋. 整体叶轮双列开槽五轴插铣加工的残留材料建模[J]. 机械工程学报, 2024, 60(19): 310-317. |
[10] | 王高见, 刘丽, 康丹丹, 叶延洪, 邓德安. Ni含量对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2024, 60(18): 163-172. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[13] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[14] | 张禹泽, 赵竞夫, 赵振伟, 康荣杰, 戴建生, 宋智斌. 面向多关节训练的并联柔索驱动下肢康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 111-122. |
[15] | 梁旭, 张建勇, 李国涛, 苏婷婷, 何广平, 侯增广. 面向骨折复位手术的冗余并联机构:设计、建模与性能分析[J]. 机械工程学报, 2024, 60(17): 133-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||