[1] GU T,STOPKA K S,XU C,et al. Prediction of maximum fatigue indicator parameters for duplex Ti-6Al-4V using extreme value theory[J]. Acta Materialia,2020,188:504-516. [2] MCDOWELL D L,DUNNE F P E. Microstructure-sensitive computational modeling of fatigue crack formation[J]. International Journal of Fatigue,2010,32:1521-1542. [3] PRZYBYLA C P,MUSINSKI W D,CASTELLUCCIO G M,et al. Microstructure-sensitive HCF and VHCF simulations[J]. International Journal of Fatigue,2013,57:9-27. [4] MCDOWELL D L. Simulation-based strategies for microstructure-sensitive fatigue modeling[J]. Materials Science&Engineering. A,Structural Materials:Properties,Microstructure and Processing,2007,468:4-14. [5] VEHOFF H,NYKYFORCHYN A,METZ R. Fatigue crack nucleation at interfaces[J]. Materials Science&Engineering. A,Structural Materials:Properties,Microstructure and Processing,2004,387:546-551. [6] MANONUKUL A,DUNNE F P E. High-and low-cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings of the Royal Society. A,Mathematical,Physical,and Engineering Sciences,2004,460(2047):1881-1903. [7] WEN B,ZABARAS N. Investigating variability of fatigue indicator parameters of two-phase nickel-based superalloy microstructures[J]. Computational Materials Science,2012,51:455-481. [8] SMITH B D,SHIH D S,MCDOWELL D L. Fatigue hot spot simulation for two widmanstätten titanium microstructures[J]. International Journal of Fatigue,2016,92:116-129. [9] BENNETT V P,MCDOWELL D L. Polycrystal orientation distribution effects on microslip in high cycle fatigue[J]. International Journal of Fatigue,2003,25:27-39. [10] BRIFFOD F,SHIRAIWA T,ENOKI M. Numerical investigation of the influence of rolling texture and microstructure on fatigue crack initiation in BCC polycrystals[J]. International Journal of Fatigue,2018,107:72-82. [11] SWEENEY C A,O'BRIEN B,MCHUGH P E,et al. Experimental characterisation for micromechanical modelling of CoCr stent fatigue[J]. Biomaterials,2014,35(1):36-48. [12] SWEENEY C A,O'BRIEN B,DUNNE F P E,et al. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material[J]. Journal of the Mechanical Behavior of Biomedical Materials,2015,46:244-260. [13] SWEENEY C A,MCHUGH P E,MCGARRY J P,et al. Micromechanical methodology for fatigue in cardiovascular stents[J]. International Journal of Fatigue,2012,44:202-216. [14] YUAN G,WANG R,GONG C,et al. Investigations of micro-notch effect on small fatigue crack initiation behaviour in nickel-based alloy GH4169:Experiments and simulations[J]. International Journal of Fatigue,2020,136:105578. [15] ASHTON P J,HARTE A M,LEEN S B. A strain-gradient,crystal plasticity model for microstructure-sensitive fretting crack initiation in ferritic-pearlitic steel for flexible marine risers[J]. International Journal of Fatigue,2018,111:81-92. [16] PRITHIVIRAJAN V,SANGID M D. Examining metrics for fatigue life predictions of additively manufactured IN718 via crystal plasticity modeling including the role of simulation volume and microstructural constraints[J]. Materials Science&Engineering. A,Structural Materials:Properties,Microstructure and Processing,2020,783:139312. [17] CRUZADO A,LUCARINI S,LLORCA J,et al. Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718[J]. International Journal of Fatigue,2018,113:236-245. [18] KORSUNSKY A,DINI D,DUNNE F P E,et al. Comparative assessment of dissipated energy and other fatigue criteria[J]. International Journal of Fatigue,2007,29:1990-1995. [19] SKELTON R P,VILHELMSEN T,WEBSTER G A. Energy criteria and cumulative damage during fatigue crack growth[J]. International Journal of Fatigue,1998,20:641-649. [20] YUAN G,ZHANG X,CHEN B,et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. Journal of Materials Science&Technology,2020,38:28-38. [21] 尚德广,王德俊.多轴疲劳强度[M].北京:科学出版社,2007. SHANG Deguang,WANG Dejun. Multiaxial fatigue strength[M]. Beijing:Science Press,2007. [22] FATEMI A,SOCIE D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue&Fracture of Engineering Materials&Structures,1988,11(3):149-165. [23] FATEMI A,KURATH P. Multiaxial fatigue life predictions under the influence of mean-stresses[J]. Journal of Engineering Materials&Technology,1988,110(4):380-388. [24] CASTELLUCCIO G M,MCDOWELL D L. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals[J]. Materials Science&Engineering. A,Structural Materials:Properties,Microstructure and Processing,2015,639:626-639. [25] LIU H,WANG W,ZHU C,et al. A microstructure sensitive contact fatigue model of a carburized gear[J]. Wear,2019,436-437:203035. [26] HALLBERG H,ÅS S K,SKALLERUD B. Crystal plasticity modeling of microstructure influence on fatigue crack initiation in extruded Al6082-T6 with surface irregularities[J]. International Journal of Fatigue,2018,111:16-32. [27] PRASANNAVENKATESAN R,ZHANG J,MCDOWELL D L,et al. 3D modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels[J]. International Journal of Fatigue,2009,31:1176-1189. [28] PRASANNAVENKATESAN R,PRZYBYLA C P,SALAJEGHEH N,et al. Simulated extreme value fatigue sensitivity to inclusions and pores in martensitic gear steels[J]. Engineering Fracture Mechanics,2011,78(6):1140-1155. [29] YUAN H,ZHANG W,CASTELLUCCIO G M,et al. Microstructure-sensitive estimation of small fatigue crack growth in bridge steel welds[J]. International Journal of Fatigue,2018,112:183-197. [30] STOPKA K S,MCDOWELL D L. Microstructure-sensitive computational multiaxial fatigue of Al 7075-T6 and duplex Ti-6Al-4V[J]. International Journal of Fatigue,2020,133:105460. [31] HENNESSEY C D. Modeling microstructurally small crack growth in Al 7075-T6[D]. Atlanta:Georgia Institute of Technology,2015. [32] PRZYBYLA C,PRASANNAVENKATESAN R,SALAJEGHEH N,et al. Microstructure-sensitive modeling of high cycle fatigue[J]. International Journal of Fatigue,2010,32:512-525. [33] SURESH S. Fatigue of materials[M]. 2nd ed. Cambridge:Cambridge University Press,1998. [34] ZHANG M. Crystal plasticity modeling of Ti-6Al-4V and its application in cyclic and fretting fatigue analysis[D]. Atlanta:Georgia Institute of Technology,2008. [35] SHARAF M,KUCHARCZYK P,VAJRAGUPTA N,et al. Modeling the microstructure influence on fatigue life variability in structural steels[J]. Computational Materials Science,2014,94:258-272. [36] CASTELLUCCIO G M,MCDOWELL D L. Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands[J]. International Journal of Fracture,2012,176:49-64. [37] KALLMEYER A R,KRGO A,KURATH P. Evaluation of multiaxial fatigue life prediction methodologies for Ti-6Al-4V[J]. Journal of Engineering Materials&Technology,2002,124(2):229-237. [38] FINDLEY K O,SAXENA A. Low cycle fatigue in rene 88DT at 650℃:Crack nucleation mechanisms and modeling[J]. Metallurgical and Materials Transactions A,2006,37(5):1469-1475. [39] BRIFFOD F,SHIRAIWA T,ENOKI M. Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect[J]. Materials Science&Engineering. A,Structural Materials:Properties,Microstructure and Processing,2017,695:165-177. [40] TANAKA K,MURA T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics,1981,48(1):97-103. [41] SWEENEY C A,O'BRIEN B,DUNNE F P E,et al. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy[J]. Acta Materialia,2014,78:341-353. [42] PRZYBYLA C P,MCDOWELL D L. Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti-6Al-4V[J]. International Journal of Plasticity,2011,27:1871-1895. [43] CHEN B,JIANG J,DUNNE F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation?[J]. International Journal of Plasticity,2018,101:213-229. [44] PRZYBYLA C P,MCDOWELL D L. Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100[J]. International Journal of Plasticity,2010,26:372-394. [45] OWOLABI G M,PRASANNAVENKATESAN R,MCDOWELL D L. Probabilistic framework for a microstructure-sensitive fatigue notch factor[J]. International Journal of Fatigue,2010,32:1378-1388. [46] 吴富民.疲劳破坏塑性应变能初探[C]//第六届全国疲劳学术会议.厦门:1993:439-443. WU Fumin. Preliminary study on plastic strain energy of fatigue failure[C]//The 6th National Fatigue Conference. Xiamen:1993:439-443. [47] HAN Q,RUI S,QIU W,et al. Crystal orientation effect on fretting fatigue induced geometrically necessary dislocation distribution in Ni-based single-crystal superalloys[J]. Acta Materialia,2019,179:129-141. |