• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (8): 88-95.doi: 10.3901/JME.2022.08.088

• 特邀专栏:机械装备的光纤传感检测与应用 • 上一篇    下一篇

扫码分享

基于深度学习的分布式光纤损伤识别方法

李建乐1, 张佳奇1, 黄念2, 李腾腾1, 徐浩1, 夏梓旭1, 武湛君1   

  1. 1. 大连理工大学工业装备结构分析国家重点实验室 大连 116024;
    2. 北京空天技术研究所 北京 100074
  • 收稿日期:2021-01-09 修回日期:2021-09-06 出版日期:2022-04-20 发布日期:2022-06-13
  • 通讯作者: 徐浩(通信作者),男,1983年出生,副教授。主要研究方向为结构健康监测、复合材料结构设计。E-mail:xuhao@dlut.edu.cn
  • 作者简介:李建乐,男,1995年出生,博士研究生。主要研究方向为结构健康监测及分布式光纤传感技术。E-mail:ljldllgdx@mail.dlut.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFA0702800)和某国防基础科研(XXXX2018204BXXX)资助项目。

Distributed Optical Fiber Damage Identification Method Based on Deep Learning

LI Jianle1, ZHANG Jiaqi1, HUANG Nian2, LI Tengteng1, XU Hao1, XIA Zixu1, WU Zhanjun1   

  1. 1. State key Lab. of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024;
    2. Beijing Aerospace Technology Research Institute, Beijing 100074
  • Received:2021-01-09 Revised:2021-09-06 Online:2022-04-20 Published:2022-06-13

摘要: 航空航天复合材料结构服役环境恶劣,为保证结构安全运行需要发展结构健康监测技术,基于背向瑞利散射的分布式光纤传感器因其便于埋入、抗干扰能力强等优点被广泛应用于结构健康监测领域。如何从复杂的光纤数据中识别结构损伤是健康监测的研究难点之一,基于此问题提出一种用于损伤识别的深度学习方法,采用一维卷积神经网络对复合材料层合板中的脱粘和裂纹损伤进行识别。为了验证方法的可靠性,设置预制损伤的酚醛树脂层合板的悬臂加载试验,其埋入的分布式光纤传感器很好地监测到了损伤区域的应变变化特征,采用试验数据对网络结构进行参数调整,最终确定卷积核大小和卷积层数目。试验结果表明,训练后的一维卷积神经网络能够从复杂的应变曲线中识别出损伤特征,并对损伤特征进行准确定位。在目前的研究中,该方法能够准确识别3 cm2的脱粘损伤和20 mm长的裂纹损伤,同时定位精度小于4 mm。

关键词: 结构健康监测, 分布式光纤, 卷积神经网络, 损伤识别

Abstract: The service environment of aerospace composite structures is harsh. In order to ensure the safe operation of structures, it is necessary to develop structural health monitoring technology. Distributed optical fiber sensor based on back Rayleigh scattering is widely used in the field of structural health monitoring because of its advantages of easy embedding and strong anti-interference ability. How to identify structural damage from complex optical fiber data is one of the research difficulties of health monitoring. Based on this problem, a deep learning method for damage identification is proposed. One dimensional convolution neural network is used to identify debonding and crack damage in composite laminates. In order to verify the reliability of the method, the cantilever loading test of prefabricated damaged phenolic resin laminates is set up. The embedded distributed optical fiber sensor can well monitor the strain change characteristics of the damaged area. The parameters of the network structure are adjusted by using the experimental data, and the convolution core size and the number of convolution layers are finally determined. The experimental results show that the trained one-dimensional convolutional neural network can identify the damage features from the complex strain curve and accurately locate the damage features. In the current research, this method can accurately identify 3cm2 debonding damage and 20 mm long crack damage, and the positioning accuracy is less than 4mm.

Key words: structural health monitoring, distributed optical fiber, convolution neural network, damage identification

中图分类号: