• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (8): 79-87.doi: 10.3901/JME.2022.08.079

• 特邀专栏:机械装备的光纤传感检测与应用 • 上一篇    下一篇

扫码分享

动应变与加速度在机械系统动力学描述中的关联与比较

曲永志1, 王泽超2,3, 周祖德2,3   

  1. 1. 明尼苏达大学德卢斯分校机械与工业工程系 德卢斯 55812 美国;
    2. 武汉理工大学机电工程学院 武汉 430070;
    3. 武汉理工大学湖北省数字制造重点实验室 武汉 430070
  • 收稿日期:2021-01-03 修回日期:2021-12-05 出版日期:2022-04-20 发布日期:2022-06-13
  • 通讯作者: 王泽超(通信作者),男,1992年出生,博士。主要研究方向为物理意义增强的机器学习用于建模、偏微分方程发现和求解、结构健康监测,医疗器械和智能结构。E-mail:whutwzc@whut.edu.cn
  • 作者简介:曲永志,男,1985年出生,博士,助理教授。主要研究方向为数据驱动的系统动态分析,故障诊断以及物理意义加强的机器学习。E-mail:yongzhi@umn.edu周祖德,男,1945年出生,教授。主要研究方向为数字制造,碳纤维制造,制造信息化等。E-mail:zudezhou@whut.edu.cn

Correlation and Comparison of Dynamic Strain and Acceleration in the Description of Mechanical System Dynamics

QU Yongzhi1, WANG Zechao2,3, ZHOU Zude2,3   

  1. 1. Department of Mechanical and Industrial Engineering, University of Minnesota Duluth, Duluth 55812, USA;
    2. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070;
    3. Hubei Key Laboratory of Digital Manufacturing, Wuhan University of Technology, Wuhan 43000
  • Received:2021-01-03 Revised:2021-12-05 Online:2022-04-20 Published:2022-06-13

摘要: 近年来,光纤光栅在结构健康监测以及机械故障诊断中得到了广泛的应用,其中光纤光栅主要是对应变进行测量。由于应变片和光纤光栅受限于采集设备的频率带宽,应变一直被认为是一个半静态量,所以动应变一直没有得到学术界和工业界足够的关注。人们是否能够以及如何利用动应变信号来描述动力学特性一直未能得到足够的探讨。但是据作者了解,应变率以及应变加速度的概念尚未得到阐释和定义以及应用。基于此,提出两个基本假设,第一,动应变可以像位移一样用于机械系统动力学描述;第二,动应变在时间尺度上可微分得到应变率和应变加速度。当我们同时获得了应变,应变率和应变加速度,我们可以将它们作为表征机械系统动力学特性的物理参量在时域中对动力学模型进行直接验证,从而提供了一种新的理论模型与试验数据的对比验证方式。给出应变,应变率,和应变加速度描述的动力学方程模型,同时给出信号在对时间进行微分和积分运算时其幅值和频率之间的理论关系,并在搭建的齿轮箱试验平台和液压管路试验平台上对比常用的数值积分方法和数值微分方法在合成信号时候的保真性能。试验结果表明光纤光栅动应变信号通过数值微分合成应变率和应变加速度时其频率成分和幅值均不会失真,然而加速度信号通过数值积分合成的速度和位移在频率成分和幅值上均出现了失真的现象。

关键词: 动应变, 加速度, 动力学, 光纤光栅

Abstract: Recently, the fiber Bragg grating(FBG) strain sensor has been widely used in structural health monitoring and the fault diagnosis of the machinery. Due to the limitation of the bandwidth of strain gauges and FBG strain sensors, strain has always been considered as a semi-static variable, therefore the dynamic strain has not got enough attention. Whether and how people can use dynamic strain signals to describe dynamic characteristics has not been sufficiently discussed and explored. To the best of the authors' knowledge, the concepts of strain rate the strain acceleration have not been developed and applied. To bridge the gap, this work will propose the concepts of strain rate and strain acceleration and two basic assumptions, i.e. the dynamic strain can be used to describe the dynamics of the mechanical system like the displacement and the dynamic strain ratio and strain acceleration can be obtained by numerical differentiating the strain signals with respect to the time. When we obtain strain, strain ratio and strain acceleration simultaneously, we can use them as physical parameters to characterize the dynamic properties to verify the dynamics model. It opens new path to compare and verify the theoretical model with the data of strain. Moreover, present study develops the dynamic model with the strain, strain ratio and strain acceleration. The theoretical relationships between the original signal and the one which is differentiated and integrated from the original signal in frequency and amplitude are given. The performances of the commonly used numerical differentiation and numerical integration methods are compared with the tests data in gear box and hydraulic pipe system. The results indicate that the high fidelity in frequency components and amplitudes is kept when the dynamic strain measured by the FBG is differentiated to obtain the strain rate and strain acceleration. However, the numerical integration in obtaining the velocity and displacement from the acceleration lose its accuracy in frequency components and amplitudes.

Key words: dynamic strain, acceleration, dynamics, FBG

中图分类号: