[1] Pang J H L,Xiong B S. Mechanical properties for 95.5Sn-3.8Ag-0.7Cu lead-free solder alloy[J]. IEEE Transactions on Components and Packaging Technologies,2005,28(4):830-840. [2] TU K N,Gusak A M,LI M. Physics and materials challenges for lead-free solders[J]. Journal of Applied Physics,2003,93(3):1335-1353. [3] 李望云,秦红波,周敏波,等. 电-力耦合作用下Cu/Sn-3.0Ag-0.5Cu/Cu微焊点的拉伸力学性能和断裂行为[J]. 机械工程学报,2016,52(10):46-53. LI Wangyun,QIN Hongbo,ZHOU Minbo,et al. Mechanical performance and fracture behavior of bicroscale Cu/Sn-3.0Ag-0.5Cu/Cu joints under electro-tensile coupled loads[J]. Journal of Mechanical Engineering,2016,52(10):46-53. [4] NOOR E E M,Singh A. Review on the effect of alloying element and nanoparticle additions on the properties of Sn-Ag-Cu solder alloys[J]. Soldering & Surface Mount Technology,2014,26(3):147-161. [5] 孔祥霞,孙凤莲,杨淼森,等. Bi和Ni元素对Cu/SAC/Cu微焊点体钎料蠕变性能的影响[J]. 机械工程学报,2017,53(2):53-60. KONG Xiangxia,SUN Fenglian,YANG Miaosen,et al. Effect of Bi and Ni concentration on the creep behavior of the bulks of Cu/SAC/Cu micro solder joints[J]. Journal of Mechanical Engineering,2017,53(2):53-60. [6] 王泽宇,霸金,马蔷,等. 纳米材料增强复合钎料的研究进展[J]. 精密成形工程,2018,10(1):82-90. WANG Zeyu,BA Jin,MA Qiang,et al. Research progress on nanomaterial reinforced composite brazing filler[J]. Journal of Netshape Forming Eenineering,2018,10(1):82-90. [7] Lee C,Wei X,Kysar J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. [8] Neubauer E,Kitzmantel M,Hulman M,et al. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes[J]. Composites Science and Technology,2010,70(16):2228-2236. [9] Pstrus J,Ozga P,Gancarz T,et al. Effect of graphene layers on phenomena occurring at interface of Sn-Zn-Cu solder and Cu substrate[J]. Journal of Electronic Materials,2017,46(8):5248-5258. [10] Wattanakornphaiboon A,Canyook R,Fakpan K. Effect of SnO2 reinforcement on creep property of Sn-Ag-Cu solders[J]. Materials Today- Proceedings,2018,5(32):9213-9219. [11] 荆洪阳,孟珊,赵雷,等. Sanicro25奥氏体耐热钢高温蠕变寿命的预测[J]. 机械工程学报,2018,54(12):165-172. JING Hongyang,MENG Shan,ZHAO Lei,et al. Creep-rupture time prediction of sanicro25 austenitic heat resistant steel at elevated temperature[J]. Journal of Mechanical Engineering,2018,54(12):165-172. [12] Lin H,Yang H,Wang Y,et al. Determination of the stress field and crack initiation angle of an open flaw tip under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2019,104:102358. [13] XU L Y,Zhang S T,Jing H Y,et al. Indentation size effect on Ag nanoparticle-modified graphene/Sn-Ag-Cu solders[J]. Journal of Electronic Materials,2018,47(1):612-619. [14] 谷涛,王强,胡斌,等. P91钢蠕变损伤的非线性超声检测方法研究[J]. 机械工程学报,2018,54(24):34-41. GU Tao,WANG Qiang,HU Bin,et al. Study on the method of nonlinear ultrasonic testing for creep damage of P91 steel[J]. Journal of Mechanical Engineering,2018,54(24):34-41. [15] Liu B,Tian Y,Wang C,et al. Ultrafast formation of unidirectional and reliable Cu3Sn-based intermetallic joints assisted by electric current[J]. Intermetallics,2017,80:26-32. [16] Liu W,Wang Y,Ma Y,et al. Nanoindentation study on micromechanical behaviors of Au-Ni-Sn intermetallic layers in Au-20Sn/Ni solder joints[J]. Materials Science and Engineering:A,2016,653:13-22. [17] ZHANG Q K,HU F Q,SONG Z L,et al. Viscoplastic creep and microstructure evolution of Sn-based lead-free solders at low strain[J]. Materials Science and Engineering:A,2017,701:187-195. [18] NIRANJANI V L,CHANDRA R B S S,SARKAR R,et al. The influence of addition of nanosized molybdenum and nickel particles on creep behavior of Sn-Ag lead free solder alloy[J]. Journal of Alloys and Compounds,2012,542:136-141. [19] Marques V M F,Wunderle B,Johnston C,et al. Nanomechanical characterization of Sn-Ag-Cu/Cu joints-Part 2:Nanoindentation creep and its relationship with uniaxial creep as a function of temperature[J]. Acta Materialia,2013,61(7):2471-2480. [20] El-Daly A A,El-Taher A M,Gouda S. Development of new multicomponent Sn-Ag-Cu-Bi lead-free solders for low-cost commercial electronic assembly[J]. Journal of Alloys and Compounds,2015,627:268-275. [21] Amalu E H,Ekere N N. Modelling evaluation of Garofalo-Arrhenius creep relation for lead-free solder joints in surface mount electronic component assemblies[J]. Journal of Manufacturing Systems,2016,39:9-23. [22] Jing H Y,Guo H J,Wang L X,et al. Influence of Ag-modified graphene nanosheets addition into Sn-Ag-Cu solders on the formation and growth of intermetallic compound layers[J]. Journal of Alloys and Compounds,2017,702:669-678. [23] Abe F. Creep behavior, deformation mechanisms, and creep life of mod.9Cr-1Mo steel[J]. Metallurgical and Materials Transactions A,2015,46(12):5610-5625. [24] Cui C,Cui X,Li X,et al. Plastic-deformation-driven SiC nanoparticle implantation in an Al surface by laser shock wave:Mechanical properties,microstructure characteristics,and synergistic strengthening mechanisms[J]. International Jouranl of Plasticity,2018,102:83-100. [25] Han Y D,Gao Y,Jing H Y,et al. A modified constitutive model of Ag nanoparticle-modified graphene/Sn-Ag-Cu/Cu solder joints[J]. Materials Science and Engineering:A,2020,777:139080. |