[1] GHAFFARI Y,DAUB K,NEWMAN R C,et al. Internal oxidation of Ag-xIn alloys at low homologous temperature[J]. Corrosion Science,2020,175:108869. [2] WITHIN D. Creep behavior of Bi-containing lead-free solder alloys[J]. Journal of Electronic Materials,2012,41(2):190-203. [3] El-REHIM A F A,ZAHRAN H Y,YASSIN A M. Microstructure evolution and tensile creep behavior of Sn-0.7Cu lead-free solder reinforced with ZnO nanoparticles[J]. Journal of Materials Science:Materials in Electronics,2019,30:2213-2223. [4] 姜楠,张亮,刘志权,等. FCBGA器件SnAgCu焊点的热冲击可靠性分析[J]. 焊接学报,2019,40(9):45-48,168. JIANG Nan,ZHAGN Liang,LIU Zhiquan,et al. Thermal shock reliability analysis of SnAgCu solder joints of FCBGA devices[J]. Transactions of the China Welding Institution,2019,40(9):45-48,168. [5] VAFAEENEZHAD H,SEYEDEIN S H,ABOUTALEBI M R,et al. Creep life prediction for Sn-5Sb lead-free solder alloy:Model and experiment[J]. Microelectronic Engineering,2019,207:55-65. [6] LEE H H,KWAK J B. Realistic creep characterization for Sn3. 0Ag0. 5Cu solder joints in flip chip BGA package[J]. Journal of Electronic Materials,2019,48(10):6857-6865. [7] SURENDAR A,SISWANTO W A,ALIJANI M,et al. High-G drop effect on the creep-fatigue failure of SAC solder joints in BGA packages[J]. Microsystem Technologies,2019,25(10):4027-4034. [8] XU Y,GU T,XIAN J,et al. Intermetallic size and morphology effects on creep rate of Sn-3Ag-0.5 Cu solder[J]. International Journal of Plasticity,2021,137:102904. [9] SONG H,MORRIS J,HUA F. The creep properties of lead-free solder joints[J]. The Journal of the Minerals,2002,54(6):30-32. [10] TERASHIMA S,ISHIKAWA S. Effect of dispersoids in β-Sn matrix on creep properties of chip scale packages joined by Sn-xAg-0.5mass% Cu (x=1,2,3 and 4 mass%) solder alloys[J]. Materials Transactions,2015,56(4):507-512. [11] LANGDON T G. Creep at low stresses:An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms[J]. Metallurgical and Materials Transactions A,2002,33(2):249-259. [12] ZHANG X,YIN L,YU C. Thermal creep and fracture behaviors of the lead-free Sn-Ag-Cu-Bi solder interconnections under different stress levels[J]. Journal of Materials Science:Materials in Electronics,2008,19(4):393-398. [13] TERASHIMA S,ISHIKAWA S. Effect of dispersoids in β-Sn matrix on creep properties of chip scale packages joined by Sn-xAg-0.5mass% Cu (x=1,2,3 and 4 mass%) solder alloys[J]. Materials Transactions,2015,56(4):507-512. [14] VILLAN J,BRUELLER O S,QASIM T. Creep behaviour of lead free and lead containing solder materials at high homologous temperatures with regard to small solder volumes[J]. Sensors and Actuators A Physical,2002,99(1-2):194-197. [15] WIESE S,FEUSTEL F,MEUSEL E. Characterisation of constitutive behaviour of SnAg,SnAgCu and SnPb solder in flip chip joints[J]. Sensors and Actuators A Physical,2002,99(1-2):188-193. [16] KERR M,CHAWLA N. Creep deformation behavior of Sn-3.5Ag solder at small length scales[J]. Acta Materialia,2004,52(15):4527-4535. [17] XU C,DENG Q,WENG Z,et al. Lithium-assisted creep deformation behavior of Sn nanoparticle electrode with fracture-resistant ability[J]. Journal of Materials Research,2019,34(23):1-12. [18] F SOMIDIN, MCDONALD S D, YE X,et al. Reducing cracking in solder joint interfacial Cu6Sn5 with modified reflow profile[J]. Transactions of The Japan Institute of Electronics Packaging,2020,13:E19-004-1-E19-004-11. [19] El-TAHER A M,RAZZK A F. Controlling Ag3Sn plate formation and its effect on the creep resistance of Sn-3.0Ag-0.7Cu lead-free solder by adding minor alloying elements Fe,Co,Te and Bi[J]. Metals and Materials International,2020:1-12. |