[1] CHEN C M,WANG K J,CHEN K C. Isothermal solid-state aging of Pb-5Sn solder bump on Ni/Cu/Ti under bump metallization[J]. Journal of Alloys and Compounds,2007,432(1-2):122-128. [2] YANG Jie. A silicon carbide wireless temperature sensing system for high temperature applications[J]. Sensors,2013,13(2):1884-1901. [3] WU Jiaqi,LEE C C. Low-pressure solid-state bonding technology using fine-grained silver foils for high-temperature electronics[J]. Journal of Materials Science,2018,53(4):2618-2630. [4] WATSON J,CASTRO G. A review of high-temperature electronics technology and applications[J]. Journal of Materials Science-Materials in Electronics,2015,26(12):9226-9235. [5] MATOCHA K. Challenges in SiC power MOSFET design[C]//International Semiconductor Device Research Symposium. College Pk,MD:IEEE,2007:359-360. [6] MANIKAM V R,CHEONG K Y. Die attach materials for high temperature applications:A review[J]. IEEE Transactions on Components Packaging and Manufacturing Technology,2011,1(4):457-478. [7] WENG M H,CLARK D T,WRIGHT S N,et al. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide[J]. Semiconductor Science and Technology,2017,32(5):054003. [8] ROWDEN B,MAANTOOTH A,ANG S,et al. High temperature SiC power module packaging[C]//ASME International Mechanical Engineering Congress and Exposition. Lake Buenavista,FL:ASME,2010:85-90. [9] PENG Peng,HU Anming,GERLICH A P,et al. Joining of silver nanomaterials at low temperatures:Processes,properties,and applications[J]. ACS Applied Materials & Interfaces,2015,7(23):12597-12618. [10] ISHIZAKI T,KUNO A,TANE A,et al. Reliability of Cu nanoparticle joint for high temperature power electronics[J]. Microelectronics Reliability,2014,54(9):1867-1871. [11] QU Y D,LIANG X L,KONG X Q,et al. Size-dependent cohesive energy,melting temperature,and debye temperature of spherical metallic nanoparticles[J]. Physics of Metals and Metallography,2017,118(6):528-534. [12] ZHANF M,EFREMOV M Y,SCHIETTEKATTE F,et al. Size-dependent melting point depression of nanostructures:Nanocalorimetric measurements[J]. Physical Review B,2000,62(15):10548-10557. [13] MOON K S,DONG H,MARIC R,et al. Thermal behavior of silver nanoparticles for low-temperature interconnect applications[J]. Journal of Electronic Materials,2005,34(2):168-175. [14] LU Guoquan,YANG Wen,MEI Yunhui,et al. Migration of sintered nanosilver on alumina and aluminum nitride substrates at high temperatures in dry air for electronic packaging[J]. IEEE Transactions on Device and Materials Reliability,2014,14(2):600-606. [15] CHIN H S,CHEONG K Y,ISMAIL A B. A review on die attach materials for SiC-based high-temperature power devices[J]. Metallurgical and Materials Transactions B,2010,41(4):824-832. [16] LIU Jingdong,CHEN Hongtao,JI Hongjun,et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces,2016,8(48):33289-33298. [17] LAI Haiqi,ZHANG Yu,YANG Guannan,et al. Study on the interconnect performance of multicomponent paste for 3rd generation semiconductor packaging[C]//International Conference on Electronic Packaging Technology. Guangzhou:IEEE,2020:1-4. [18] CHOI E B,LEE J H. Dewetting behavior of Ag in Ag-coated Cu particle with thick Ag shell[J]. Applied Surface Science,2019,480:839-845. [19] ZHANG Jingguo,LIANG Minghui,HU Qiang,et al. Cu@Ag nanoparticles doped micron-sized Ag plates for conductive adhesive with enhanced conductivity[J]. International Journal of Adhesion and Adhesives,2020,102:102657. [20] KOBAYASHI Y,ABE Y,MAEDA T,et al. A metal-metal bonding process using metallic copper nanoparticles produced by reduction of copper oxide nanoparticles[J]. Journal of Materials Research and Technology,2014,3(2):114-121. [21] MEI Yunhui,LI Lin,LI Xin. Electric-current-assisted sintering of nanosilver paste for copper bonding[J]. Journal of Materials Science-Materials in Electronics,2017,28(12):9155-9166. |