机械工程学报 ›› 2022, Vol. 58 ›› Issue (2): 100-121.doi: 10.3901/JME.2022.02.100
张文武, 潘浩, 马秋晨, 李明雨, 计红军
收稿日期:
2021-04-30
修回日期:
2021-07-31
出版日期:
2022-01-20
发布日期:
2022-03-19
通讯作者:
计红军(通信作者),男,1980年出生,博士,教授,博士研究生导师。主要研究方向为功率超声在微纳连接、电子封装等领域的基础与应用基础。E-mail:jhj7005@hit.edu.cn
作者简介:
张文武,男,1991年出生,博士研究生。主要研究方向为金属纳米颗粒在大功率器件封装互连中的烧结机制与应用。E-mail:zhangwenwu7410@163.com
基金资助:
ZHANG Wenwu, PAN Hao, MA Qiuchen, LI Mingyu, JI Hongjun
Received:
2021-04-30
Revised:
2021-07-31
Online:
2022-01-20
Published:
2022-03-19
摘要: 新材料与工艺是推动先进电子制造与封装发展的关键,尤其针对高集成度、高温服役和高可靠性等大功率器件的互连难题,开发出面向高端微电子制造关键"卡脖子"技术的材料与工艺显得尤为紧迫。功率超声具有表面清洁、空化与声流等特性,可显著提高界面冶金连接能力,能有效克服传统瞬态液相连接反应时间长与温度高的难点,且能破解Cu、Al等金属互连过程中易氧化的痛点问题,并解决了SiC、Al2O3、AlN等陶瓷基板难润湿与纳米颗粒低温烧结驱动力不足的难题。结合本团队在该领域深耕多年的积累,聚焦功率超声应用于微纳连接方向,从超声固相键合、超声复合钎焊和超声纳米烧结互连等三个方面综述了面向电子制造中功率超声微纳连接技术的原理、方法、特点及实际应用场合,并分别从固相连接中引线键合、室温超声金属连接和超声增材制造等领域,到钎焊连接中超声低中高温软钎焊与超声瞬态液相连接等领域,提出适用于超声微纳连接的新型互连技术。最后,针对第三代半导体中大功率器件封装互连的迫切需求提出了超声纳米烧结连接新方法,并开发出具有高效低温连接高温服役的金属纳米焊膏新型互连材料,且对其接头力学、热学、电学,以及可靠性等进行了全面评估,也进一步总结了功率超声微纳连接技术的研究进展及趋势。
中图分类号:
张文武, 潘浩, 马秋晨, 李明雨, 计红军. 功率超声微纳电子封装互连技术研究进展[J]. 机械工程学报, 2022, 58(2): 100-121.
ZHANG Wenwu, PAN Hao, MA Qiuchen, LI Mingyu, JI Hongjun. Review of Power Ultrasonic Micro-nano Joining Technology for Electronic Manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(2): 100-121.
[1] 高尚通,杨克武. 新型微电子封装技术[J]. 电子与封装,2004(1):10-15. GAO Shangtong,YANG Kewu. New microelectronic packaging technology[J]. Electronics & Packaging,2004(1):10-15. [2] LAI Z,XIE R,PAN C,et al. Ultrasound-assisted transient liquid phase bonding of magnesium alloy using brass interlayer in air[J]. Journal of Materials Science & Technology,2017,33(6):567-572. [3] YONG L. Power electronic packaging:Design,assembly process,reliability and modeling[M]. Berlin:Springer Science & Business Media,2012. [4] CHUNG D. Materials for electronic packaging[J]. Amsterdam:Elsevier,1995. [5] JI H,WANG J,LI M. Evolution of the bulk microstructure in 1100 aluminum builds fabricated by ultrasonic metal welding[J]. Journal of Materials Processing Technology,2014,214(2):175-182. [6] JI H,LI M,WANG C,et al. In situ measurement of bond resistance varying with process parameters during ultrasonic wedge bonding[J]. Journal of Materials Processing Technology,2009,209(1):139-144. [7] PAN H,HUANG J,JI H,et al. Enhancing the solid/liquid interfacial metallurgical reaction of Sn+Cu composite solder by ultrasonic-assisted chip attachment[J]. Journal of Alloys and Compounds,2019,784:603-610. [8] ZHANG C,JI H,XU H,et al. Interfacial microstructure and mechanical properties of ultrasonic-assisted brazing joints between Ti-6Al-4V and ZrO2[J]. Ceramics International,2020,46(6):7733-7740. [9] XIAO Y,JI H,LI M,et al. Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn-3Al filler metal[J]. Materials & Design,2013,52:740-747. [10] LIU J,CHEN H,JI H,et al. Highly conductive cu-cu joint formation by low-temperature sintering of formic acid-treated cu nanoparticles[J]. ACS Applied Materials & Interfaces,2016, 8(48):33289-33298. [11] JI H,QIAO Y,LI M. Rapid formation of intermetallic joints through ultrasonic-assisted die bonding with Sn-0.7Cu solder for high temperature packaging application[J]. Scripta Materialia,2016,110:19-23. [12] JI H,ZHOU J,LIANG M,et al. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging[J]. Ultrasonics Sonochemistry,2017,41:375-381. [13] HARMAN G G. Microelectronic ultrasonic bonding[M]. US National Bureau of Standards,1974. [14] LONG Y,TWIEFEL J,WALLASCHEK J. A review on the mechanisms of ultrasonic wedge-wedge bonding[J]. Journal of Materials Processing Technology,2017,245:241-258. [15] RUDOLF S F. Room temperature wedge-wedge ultrasonic bonding using aluminum coated copper wire[J]. Microelectronics Reliability,2011, 51(1):97-106. [16] DOHLE R,MÜLLER T,SCHULZE H,et al,Gold wire for room temperature wedge-wedge bonding[C]//Proceedings of the 41st international symposium on microelectronics, Providence, Rhode Island. 2008:6-11. [17] MANTESE J V,ALCINI W V. Platinum wire wedge bonding:A new IC and microsensor interconnect[J]. Journal of Electronic Materials,1988,17(4):285-289. [18] ONUKI J,KOIZUMI M,YOSHIOKA O. Bonding strength between Al-wires and Ni-p plated lead frames[J]. Materials Transactions,1993,34(10):976-981. [19] KRZANOWSKI J E,MURDESHWAR N. Deformation and bonding processes in aluminum ultrasonic wire wedge bonding[J]. Journal of Electronic Materials,1990,19(9):919-928. [20] RIBEN A R,SHERMAN S L,LAND W V,et al. Microbonds for hybrid microcircuits[C]//Fifth Annual Symposium on the Physics of Failure in Electronics. IEEE,1966:534-556. [21] KHAJA A,KAESTLE C,FRANKE J. Reliable packaging technologies for power electronics:Diffusion soldering and heavy copper wire bonding[C]//20133rd International Electric Drives Production Conference (EDPC). IEEE,2013:1-6. [22] 席俭飞,张方晖. 平整度对细Al丝超声引线键合强度的影响[J]. 半导体技术,2009,34(11):1070-1073. XI Jianfei,Zhang Fanghui. Effect of substrate surface smoothness on thin al wire wedge bonding strength[J] Semiconductor Technology,2009,34(11):1070-1073. [23] KANG H,SHARMA A,JUNG J P. Recent progress in transient liquid phase and wire bonding technologies for power electronics[J]. Metals,2020,10(7):934. [24] JI H,LI M,KIM J,et al. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy[J]. Materials Characterization,2008,59(10):1419-1424. [25] JI H,LI M,WANG C,et al. Evolution of the bond interface during ultrasonic Al-Si wire wedge bonding process[J]. Journal of Materials Processing Technology,2007,182(1-3):202-206. [26] LI M,JI H,WANG C. Comparison of bond interface reaction in Al-Ni and Al-Au systems formed by utrasonic wedge bonding[C]//2006 International Conference on Electronic Materials and Packaging. IEEE,2006:1-4. [27] LI M,JI H,WANG C,et al. Interdiffusion of Al-Ni system enhanced by ultrasonic vibration at ambient temperature[J]. Ultrasonics,2006,45(1-4):61-65. [28] JI H,LI M,WANG C,et al. Evolution of the bond interface during ultrasonic Al-Si wire wedge bonding process[J]. Journal of Materials Processing Technology,2007,182(1-3):202-206. [29] JI H,LI M,KIM J M,et al. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy[J]. Materials Characterization,2008,59(10):1419-1424. [30] JI H,LI M,WANG C,et al. Comparison of interface evolution of ultrasonic aluminum and gold wire wedge bonds during thermal aging[J]. Materials Science & Engineering A,2007,447(1-2):111-118. [31] CHEN K,ZHANG Y. Mechanical analysis of ultrasonic welding considering knurl pattern of sonotrode tip[J]. Materials & Design,2015,87(15):393-404. [32] LI H,CAO B. Effects of welding pressure on high-power ultrasonic spot welding of Cu/Al dissimilar metals[J]. Journal of Manufacturing Processes,2019,46:194-203. [33] KOMIYAMA K,SASAKI T,WATANABE Y. Effect of tool edge geometry in ultrasonic welding[J]. Journal of Materials Processing Technology,2016,229:714-721. [34] NI Z L,YE F X. Ultrasonic spot welding of aluminum alloys:A review[J]. Journal of Manufacturing Processes,2018,35:580-594. [35] WU Xin,LIU Teng,CAI W. Microstructure, welding mechanism, and failure of Al/Cu ultrasonic welds[J]. Journal of Manufacturing Processes,2015,20:321-331. [36] DHARA S,DAS A. Impact of ultrasonic welding on multi-layered Al-Cu joint for electric vehicle battery applications:A layer-wise microstructural analysis[J]. Materials Science and Engineering:A,2020,791:139795. [37] BAKAVOS D,PRANGNELL P B. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet[J]. Materials Science & Engineering A,2010,527(23):6320-6334. [38] FUJII H T,ENDO H,SATO Y S,et al. Interfacial microstructure evolution and weld formation during ultrasonic welding of Al alloy to Cu[J]. Materials Characterization,2018,139:233-240. [39] FUJII H T,GOTO Y,SATO Y S,et al. Microstructure and lap shear strength of the weld interface in ultrasonic welding of Al alloy to stainless steel[J]. Scripta Materialia,2016,116:135-138. [40] GUNDUZ I E,ANDO T,SHATTUCK E,et al. Enhanced diffusion and phase transformations during ultrasonic welding of zinc and aluminum[J]. Scripta Materialia,2005,52(9):939-943. [41] SAMANTA A,XIAO S,SHEN N,et al. Atomistic simulation of diffusion bonding of dissimilar materials undergoing ultrasonic welding[J]. International Journal of Advanced Manufacturing Technology,2019,103(1-4):879-890. [42] PATEL V K,BHOLE S D,CHEN D L. Influence of ultrasonic spot welding on microstructure in a magnesium alloy[J]. Scripta Materialia,2011,65(10):911-914. [43] ZHANG Z,WANG K,LI J,et al. Investigation of interfacial layer for ultrasonic spot weld aluminum to copper joints[J]. Scientific Reports,2017,7(1):12505. [44] SRIRAMAN M R,GONSER M,FUJII H T,et al. Thermal transients during processing of materials by very high power ultrasonic additive manufacturing[J]. Journal of Materials Processing Tech.,2011,211(10):1650-1657. [45] HEHR A,DAPINO M J. Dynamics of ultrasonic additive manufacturing[J]. Ultrasonics,2017,73:49-66. [46] YANG Y,RAM G,STUCKER B E. Bond formation and fiber embedment during ultrasonic consolidation[J]. Journal of Materials Processing Technology,2009,209(10):4915-4924. [47] SHIMIZU S,FUJII H T,SATO Y S,et al. Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061[J]. Acta Materialia,2014,74:234-243. [48] PAL D,STUCKER B. A study of subgrain formation in Al 3003 H-18 foils undergoing ultrasonic additive manufacturing using a dislocation density based crystal plasticity finite element framework[J]. Journal of Applied Physics,2013,113(20):203517. [49] FUJII,HIROMICHI T,SHIMIZU,et al. High-strain-rate deformation in ultrasonic additive manufacturing[J]. Scripta Materialia,2017,135:125-129. [50] OBIELODAN J,STUCKER B. A fabrication methodology for dual-material engineering structures using ultrasonic additive manufacturing[J]. International Journal of Advanced Manufacturing Technology,2014,70(1-4):277-284. [51] LI J,MONAGHAN T,MASURTSCHAK S,et al. Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials[J]. Materials Science and Engineering:A,2015,639:474-481. [52] MOU C,SAFFARI P,LI D,et al. Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation[J]. Measurement Science & Technology,2009,20(3):54-57. [53] XU Z,LI Z,LI J,et al. Control Al/Mg intermetallic compound formation during ultrasonic-assisted soldering Mg to Al[J]. Ultrasonics Sonochemistry,2018,46:79-88. [54] JI H,LI M,MA S,et al. Ni3Sn4-composed die bonded interface rapidly formed by ultrasonic-assisted soldering of Sn/Ni solder paste for high-temperature power device packaging[J]. Materials & Design,2016,108:590-596. [55] LI Z,LI M,XIAO Y,et al. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves[J]. Ultrasonics Sonochemistry,2014,21(3):924-929. [56] XIAO Y,WANG Q,WANG Z,et al. Ultrasonic soldering of Cu alloy using Ni-foam/Sn composite interlayer[J]. Ultrasonics Sonochemistry,2018,45:223-230. [57] JI H,WANG Q,LI M,et al. Effects of ultrasonic irradiation and cooling rate on the solidification microstructure of Sn-3.0Ag-0.5Cu alloy[J]. Journal of Materials Processing Technology,2014,214(1):13-20. [58] WANG S, KANG J,ZHANG J,et al. A study on the effect of ultrasonic treatment on the microstructure of sn-30 wt.% bi alloy[J]. Materials,2018,11(10):1870. [59] YU W,LIU Y,LIU Y. Formation and evolution of Cu-Sn intermetallic compounds in ultrasonic-assisted soldering[J]. Journal of Electronic Materials,2019,48(9):5595-5602. [60] GUO W B,LUAN T M,LENG X S,et al. Interfacial microstructure evolution and mechanical properties of Al/Sn joints by ultrasonic-assisted soldering[J]. Transactions of Nonferrous Metals Society of China,2017,27(4):962-970. [61] ZHANG W,CAO Y,HUANG J,et al. Ultrasonic- accelerated metallurgical reaction of Sn/Ni composite solder:Principle,kinetics,microstructure,and joint properties[J]. Ultrasonics Sonochemistry,2020,66:105090. [62] XU P,HU F,SHANG J,et al. An ambient temperature ultrasonic bonding technology based on Cu micro-cone arrays for 3D packaging[J]. Materials Letters,2016,176:155-158. [63] LIN Z,XU Z,MA L,et al. Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II:Cavitation erosion effect[J]. Ultrasonics Sonochemistry,2019,50:278-288. [64] YANG H,TAN Q,JI H,et al. Dissolution and nucleation behavior of Al in Ta/Sn/Al joints during ultrasonic-assisted soldering[J]. Materials Letters,2019,252:103-105. [65] FENG J,XUE S,WEI D. Reliability studies of Cu/Al joints brazed with Zn-Al-Ce filler metals[J]. Materials & Design,2012,42:156-163. [66] BERLANGA-LABARI C,ALBÍSTUR-GOÑI A,BALERDI-AZPILICUETA P,et al. Study and selection of the most appropriate filler materials for an Al/Cu brazing joint in cooling circuits[J]. Advanced Manufacturing Processes,2011,26(2):236-241. [67] 郭子辉,黄海滔,马义明,等. Cr含量对ZnAl4合金的组织和力学性能的影响[J]. 上海金属,2019(6):19-23. Guo Zihui,Huang Haitao,MA Yiming,et al. Effect of Cr content on microstructure and mechanical properties of ZnAl4 alloy[J]. Shanghai Metals,2019,41(6):19-23. [68] 杨金龙,薛松柏,姬峰,等. Ti元素对Zn-22Al钎料组织和性能的影响[J]. 焊接学报,2012,33(11):93-96. YANG Jinlong,XUE Songbai,JI Feng,et al. Effect of titanium on microstructure and properties of Zn22Al filler metals[J]. Transactions of The China Welding Institution,2012,33(11):93-96. [69] 张满,薛松柏,戴玮,等. Ag元素对Zn-Al钎料性能的影响[J]. 焊接学报,2010,31(10):73-76. ZHANG Man,XUE Songbai,DAI Wei,et al. Effect of Ag on properties of Zn-Al brazing filler metal[J]. Transactions of The China Welding Institution,2010,31(10):73-76. [70] 张冬冬,刘树英,陈泽,等. 添加元素Sn,Cu对Zn-Al钎料组织性能的影响[J]. 焊接,2017(4):21-24. ZHANG Dongdong,LIU Shuying,CHEN Ze,et al. Effect of element Sn and Cu on microstructure and mechanical properties of Zn-Al solder[J]. Welding and Joining,2017(4):21-24. [71] 李永刚,范桂霞,赵开新,等. 锡元素对Zn-10Al钎料合金组织及性能的影响[J]. 郑州大学学报,2015,36(5):11-14. LI Yonggang,FAN Giaxia,ZHAO Kaixin,et al. Effect of Sn on structure and property of Zn-10Al solder alloy[J]. Journal of Zhengzhou University,2015,36(5):11-14. [72] 丁宝珠,孙禹冲,王盼盼. 合金元素的添加对Zn-Al系铝合金钎料性能的影响[J]. 硅谷,2014(9):48-49. DING Baozhu,SUN Yuchong,WANG Panpan. Effect of alloying elements on the properties of Zn-Al solder alloy[J]. Silicon Valley,2014(9):48-49. [73] 杨金龙,薛松柏,薛鹏,等. 锆元素对Zn-15Al钎料组织和性能的影响[J]. 焊接学报,2016(12):61-65. YANG Jinlong,XUE Songbai,XUE Peng,et al. Effect of zirconium on microstructure and properties of Zn15Al filler metal[J]. Transactions of The China Welding Institution,2016,37(12):61-65. [74] 王博,刘晗,薛松柏,等. 稀土元素Ce对Zn-22Al钎料组织和性能的影响[J]. 焊接学报,2013,34(11):61-64. WANG Bo,LIU Han,XUE Songbai,et al. Effect of rare earth Ce on microstructure and properties of Zn-22Al filler metal[J]. Transactions of The China Welding Institution,2013,34(11):61-64. [75] CHEN X,XIE R,LAI Z,et al. Interfacial structure and formation mechanism of ultrasonic-assisted brazed joint of SiC ceramics with Al-12Si filler metals in air[J]. Journal of Materials Science & Technology,2017,33(5):492-498. [76] JI H,LI M,CHENG X. Ultrafast ultrasonic-assisted joining of bare alpha-alumina ceramics through reaction wetting by aluminum filler in air[J]. Journal of the European Ceramic Society,2016,36(16):4339-4344. [77] CHEN X,YAN J,REN S,et al. Ultrasonic-assisted brazing of SiC ceramic to Ti-6Al-4V alloy using a novel AlSnSiZnMg filler metal[J]. Materials Letters,2013,105:120-123. [78] SHAO A,WU A,BAO Y,et al. Rapid Ag/Sn/Ag transient liquid phase bonding for high-temperature power devices packaging by the assistance of ultrasound[J]. Ultrasonics Sonochemistry,2017,37:561-570. [79] LI Z,DONG H,SONG X,et al. Rapid formation of Ni3Sn4 joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process[J]. Ultrasonics Sonochemistry,2017,36:420-426. [80] XIE R,CHEN X,LAI Z,et al. Microstructure,mechanical properties and mechanism of ultrasound-assisted rapid transient liquid phase bonding of magnesium alloy in air[J]. Materials & Design,2016,91:19-27. [81] TAN A,TAN A,YUSOF F. Effect of ultrasonic vibration time on the Cu/Sn-Ag-Cu/Cu joint soldered by low-power-high-frequency ultrasonic-assisted reflow soldering[J]. Ultrasonics Sonochemistry,2017,34:616-625. [82] DGEA E,IT B,FW A,et al. Fundamental studies of ultrasonic melt processing[J]. Ultrasonics Sonochemistry,2018,49:455-467. [83] 王荔洁. 超声作用对钎料与铁基非晶合金润湿性影响的研究[D]:哈尔滨:哈尔滨工业大学,2014. WANG Lijie. Study on the effect of ultrasonic on wettabiliy of solder and iron-based amorphous[D]. Harbin:Harbin Institute of Technology,2014. [84] JI H,CHEN H,LI M. Effect of ultrasonic transmission rate on microstructure and properties of the ultrasonic-assisted brazing of Cu to alumina[J]. Ultrasonics Sonochemistry,2017,34:491-495. [85] JI H,HAO C,LI M. Overwhelming reaction enhanced by ultrasonics during brazing of alumina to copper in air by Zn-14Al hypereutectic filler[J]. Ultrasonics Sonochemistry,2017,35:61-71. [86] 何气敬. 超声辅助连接氧化铝陶瓷界面润湿机制及性能研究[D]. 哈尔滨:哈尔滨工业大学,2015. HE Qijing. Mechanism of interface wetting and performance of ultrasonic-assisted brazing alumina ceramic[D]. Harbin:Harbin Institute of Technology,2015. [87] LIU Y,YU W,LIU Y. Effect of ultrasound on dissolution of Al in Sn[J]. Ultrasonics Sonochemistry,2018,50:67-73. [88] TODARO C,EASTON M,QIU D,et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications,2020,11(1):1-9. [89] MORKOC H,STRITE S,GAO G,et al. Large-band-gap SiC,III-V nitride,and II-VI ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics,1994,76(3):1363-1398. [90] YU H,LI L,ZHANG Y. Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications[J]. Scripta Materialia,2012,66(11):931-934. [91] ALAYLI N,SCHOENSTEIN F,GIRARD A,et al. Spark plasma sintering constrained process parameters of sintered silver paste for connection in power electronic modules:Microstructure,mechanical and thermal properties[J]. Materials Chemistry & Physics,2014,148(1-2):125-133. [92] YANG Y,DORN-GOMBA L,RODRIGUEZ R,et al. Automotive power module packaging:Current status and future trends[J]. IEEE Access,2020,8:160126-160144. [93] JOHNSON R. Extreme temperature packaging:Challenges and opportunities[C]//Micro-and nanotechnology sensors,systems,and applications VIII. International Society for Optics and Photonics,2016,9836:98360L. [94] ZHOU S,QI X,KANG Q,et al,Low-temperature direct and indirect bonding using plasma activation for 3D integration[C]//2020 IEEE International Conference on Integrated Circuits,Technologies and Applications (ICTA). IEEE,2020:130-132. [95] SENESKY D. Wide bandgap semiconductors for sensing within extreme harsh environments[J]. ECS Transactions,2013,50(6):233-238. [96] 陈军君,傅岳鹏,田民波. 微电子封装材料的最新进展[J]. 半导体技术,2008(3):185-189. CHEN Junjun,FU Yuepeng,TIAN Minbo. Latest development of microelectronic packaging materials[J]. Semiconductor Technology,2008(3):185-189. [97] YUAN H,HANG C,TIAN Y,et al. Rapid sintering of copper nanopaste by pulse current for power electronics packaging[C]//2017 18th International Conference on Electronic Packaging Technology (ICEPT). IEEE,2017:561-564. [98] ZHANG P,JIANG X,YUAN P,et al. Silver nanopaste:Synthesis,reinforcements and application[J]. International Journal of Heat and Mass Transfer,2018,127:1048-1069. [99] ZHANG H,BAI H,JIA Q,et al. Stabilizing the sintered nanopore bondline by residual organics for high temperature electronics[J]. Microelectronics Reliability,2020,111:113727. [100] THÜMMLER F,THOMMA W. The sintering process[J]. Metallurgical Reviews,1967,12(1):69-108. [101] LIAO B,WANG H,KANG L,et al. Electrochemical migration behavior of low-temperature-sintered Ag nanoparticle paste using water-drop method[J]. Journal of Materials Science:Materials in Electronics,2021,32(5):5680-5689. [102] KIM D,NAGAO S,CHEN C,et al. Online thermal resistance and reliability characteristic monitoring of power modules with Ag sinter joining and Pb,Pb-free solders during power cycling test by SiC TEG chip[J]. IEEE Transactions On Power Electronics,2020,36(5):4977-4990. [103] LI M,XIAO Y,ZHANG Z,et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces,2015,7(17):9157-9168. [104] CHEN T F,SIOW K S. Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints[J]. Journal of Alloys and Compounds,2021,866:158783. [105] TAN H,AN J,CHUA C,et al. Metallic nanoparticle inks for 3d printing of electronics[J]. Advanced Electronic Materials,2019,5(5):1800831. [106] MIK A,EBC B,JHL A. Improved sinter-bonding properties of silver-coated copper flake paste in air by the addition of sub-micrometer silver-coated copper particles[J]. Journal of Materials Research and Technology,2020,9(6):16006-16017. [107] TU Y,ZHU P,LI G,et al. Multiscale characterization of the joint bonded by Cu@Ag core@shell nanoparticles[J]. Applied Physics Letters,2020,116(21):213101. [108] JIA Q,ZOU G,WANG W,et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces,2020,12(14):16743-16752. [109] TU Y,ZHU P L,LI G,et al. Multiscale characterization of the joint bonded by Cu@Ag core@shell nanoparticles[J]. Applied Physics Letters,2020,116(21):213101. [110] TUO C,YAO Z,LIU W,et al. Fabrication and characteristics of Cu@Ag composite solder preform by electromagnetic compaction for power electronics[J]. Journal of Materials Processing Technology,2021,292:117056. [111] KISIEL R,SZCZEPAŃSKI Z. Die-attachment solutions for SiC power devices[J]. Microelectronics Reliability,2009,49(6):627-629. [112] LI H,JING H,HAN Y,et al. Interface evolution analysis of graded thermoelectric materials joined by low temperature sintering of nano-silver paste[J]. Journal of Alloys and Compounds,2016,659:95-100. [113] YANG F,ZHU W,WU W,et al. Microstructural evolution and degradation mechanism of SiC-Cu chip attachment using sintered nano-Ag paste during high-temperature ageing[J]. Journal of Alloys and Compounds,2020,846:156442. [114] FANG H,WANG C,ZHOU S,et al. Rapid pressureless and low-temperature bonding of large-area power chips by sintering two-step activated Ag paste[J]. Journal of Materials Science Materials in Electronics,2020,31(8):6497-6505. [115] FENG J,HANG C,TIAN Y,et al. Growth kinetics of Cu6Sn5 intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current[J]. Scientific Reports,2018,8(1):1-10. [116] GAO Y,LI W,CHEN C,et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere[J]. Materials & Design,2018,160:1265-1272. [117] LIU C,LIU A,ZHONG Y,et al. Ultrasonic-assisted nano Ag-Al alloy sintering to enable high-temperature electronic interconnections[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). IEEE,2020:1999-2004. |
[1] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[2] | 傅杨, 张跃, 毛颖, 唐小华, 陈祖高, 徐和武, 杨雨沛, 高斌, 田贵云. 基于Feature Boosting的管道电磁内检测多传感信号缺陷解析算法[J]. 机械工程学报, 2024, 60(20): 51-67. |
[3] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[4] | 张志勇, 王宇翔, 黄彩霞, 吴悠, 杜荣华. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报, 2024, 60(20): 240-250. |
[5] | 廖贵文, 张毅, 魏凯, 刘小君, 王伟. 受限润滑界面液固二相流场结构与颗粒运动行为耦合特性分析[J]. 机械工程学报, 2024, 60(20): 351-360. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 王德祥, 张宇, 江京亮, 刘新福, 刘国梁. 离子液基和棕榈油基纳米流体在镍基高温合金微量润滑磨削界面的摩擦学机理研究[J]. 机械工程学报, 2024, 60(19): 159-171. |
[8] | 李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186. |
[9] | 王晓宇, 魏兆成, 王学勤, 王栋. 整体叶轮双列开槽五轴插铣加工的残留材料建模[J]. 机械工程学报, 2024, 60(19): 310-317. |
[10] | 王高见, 刘丽, 康丹丹, 叶延洪, 邓德安. Ni含量对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2024, 60(18): 163-172. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[13] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[14] | 张禹泽, 赵竞夫, 赵振伟, 康荣杰, 戴建生, 宋智斌. 面向多关节训练的并联柔索驱动下肢康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 111-122. |
[15] | 梁旭, 张建勇, 李国涛, 苏婷婷, 何广平, 侯增广. 面向骨折复位手术的冗余并联机构:设计、建模与性能分析[J]. 机械工程学报, 2024, 60(17): 133-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||