[1] WANG W H, DONG C, SHEK C H. Bulk metallic glasses[J]. Materials Science&Engineering R Reports, 2004, R44(2/3):45-89. [2] JOHNSON W L. Bulk amorphous metal-An emerging engineering material[J]. Journal of Minerals, 2002, 54(3):40-43. [3] DU C Z, WANG C Y, ZHANG T, et al. Reduced bacterial adhesion on zirconium-based bulk metallic glasses by femtosecond laser nanostructuring[J]. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 2020, 234(4):387-397. [4] BAKKAL M, SHIH A J, SCATTERGOOD R O. Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass[J]. International Journal of Machine Tools and Manufacture, 2004, 44(9):915-925. [5] DING F, WANG C Y, ZHANG T, et al. Investigation on chip deformation behaviors of Zr-based bulk metallic glass during machining[J]. Journal of Materials Processing Technology, 2019, 276:116404. [6] XIAO C, XIAO J, YAN Z, et al. Micro-machinability of bulk metallic glass in ultra-precision cutting[J]. Materials&Design, 2017, 136:1-12. [7] MAROJU N K, YAN D P, XIE B, et al. Investigations on surface microstructure in high-speed milling of Zr-based bulk metallic glass[J]. Journal of Manufacturing Processes, 2018, 35(OCT.):40-50. [8] SANO T, TAKAHASHI M, MURAKOSHI Y, et al.Abrasive water-jet cutting of amorphous alloys[J]. Journal of Materials Processing Technology. 1992, 32(3):571-583. [9] WESSELS V, GRIGORYEV A, DOLD C, et al. Abrasive waterjet machining of three-dimensional structures from bulk metallic glasses and comparison with other techniques[J]. Journal of Materials Research, 2012, 27(8):1187-1192. [10] SHIOU F J, LOC P H, DANG N H. Surface finish of bulk metallic glass using sequential abrasive jet polishing and annealing processes[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1523-1533. [11] COLE K M. Fabrication and machining of bulk metallic glass for airborne gravity gradiometry[D]. University of Toronto, 2016. [12] 赖子健.锆基非晶合金冷态切除特性与工艺研究[D].广州:广东工业大学, 2020.LAI Zijian. Cutting of zirconium-based BMG under cold condition[D]. Guangzhou:Guangdong University of Technology, 2020. [13] 丁峰, 王成勇, 赖子健, 等.锆基非晶合金冰冻切削加工特征及其无晶化加工工艺研究[J].机械工程学报, 2021, 57(3):235-246.DING Feng, WANG Chengyong, LAI Zijian, et al.Freeing cutting characteristics and non-crystallized processing technology of Zr-based bulk metallic glass[J].Journal of Mechanical Engineering, 2021, 57(3):235-246. [14] SREEKESH K, GOVINDAN P. A review on abrasive water jet cutting[J]. International Journal of Recent advances in Mechanical Engineering, 2014, 3(3):153-158. [15] YUVARAJ N, PRADEEP M. Multiresponse optimization of abrasive water jet cutting process parameters using TOPSIS approach[J]. Advanced Manufacturing Processes, 2015, 30(7):882-889. [16] RAMACHANDRAN N, RAMAKRISHNAN N. A review of abrasive jet machining[J]. Journal of Materials Processing Technology, 1993, 39(1-2):21-31. [17] 薛胜雄.高压水射流技术工程[M].合肥:合肥工业大学出版社, 2006.XUE Shengxiong. High-pressure water jet technology engineering[M]. Hefei:Hefei University of Technology Press, 2006. [18] HASHISH M. Visualization of the abrasive water jet cutting process[J]. Experimental Mechanics, 1988, 28(2):159-169. [19] BASAK A K, FAN J M, WANG J, et al. Material removal mechanisms of monocrystalline silicon under the impact of high velocity micro-particles[J]. Wear, 2010, 269(3-4):269-277. [20] WAKU D M, YAMAUCHI Y, KANZAKI S. Material response to particle impact during abrasive jet machining of alumina ceramics[J]. Journal of Materials Processing Technology, 2003, 132(1-3):177-183. [21] MIESZALA M, TORRUBIA P L, AXINTE D A, et al.Erosion mechanisms during abrasive waterjet machining:Model microstructures and single particle experiments[J].Journal of Materials Processing Technology, 2017, 247:92-102. [22] TILLY G P. A two stage mechanism of ductile erosion[J].Wear, 1973, 23(1):87-96. [23] HASHISH M. A modeling study of metal cutting with abrasive waterjets[J]. Journal of Engineering Materials and Technology, Transactions of the ASME, 1984, 106(1):88. [24] NAVEED M, SCHLAG H, KONIG F, et al. Influence of the erodent shape on the erosion behavior of ductile and brittle Materials[J]. Tribology Letters, 2017, 65(1):18. [25] SHIMIZU K, XINBA Y, ARAYA S. Solid particle erosion and mechanical properties of stainless steels at elevated temperature[J]. Wear, 2011, 271(9-10):1357-1364. [26] LI W Y, WANG J, ZHU H T, et al. On ultrahigh velocity micro-particle impact on steels-A single impact study[J].Wear, 2013, 305(1-2):216-227. [27] LI W Y, WANG J, ZHU H T, et al. On ultrahigh velocity micro-particle impact on steels-A multiple impact study[J]. Wear, 2014, 309(1-2):52-64. [28] PEKER A, JOHNSON W L. A highly processable metallic glass:Zr41.2 Ti13.8 Cu12.5 Ni10.0Be22.5[J]. Applied Physics Letters, 1993, 63(17):2342-2344. [29] SERGUEEVA A V, MARA N A, KUNTZ J D, et al. Shear band formation and ductility of metallic glasses[J].Materials Science&Engineering A, 2004, 383(2):219-223. [30] FAN J M, WANG C Y, WANG J. Modelling the erosion rate in micro abrasive air jet machining of glasses[J].Wear, 2009, 266(9-10):968-974. [31] WADELL H. Volume, shape, and roundness of rock particles[J]. Journal of Geology, 1932, 40(5):443-451. [32] BLOTT S J, PYE K. Particle shape:A review and new methods of characterization and classification[J].Sedimentology, 2008, 55(1):31-63. [33] LIU C T, HEATHERLY L, HORTON J A, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys[J]. Metallurgical&Materials Transactions A, 1998, 29(7):1811-1820. [34] WRIGHT W J, SCHWARZ R B, NIX W D. Localized heating during serrated plastic flow in bulk metallic glasses[J]. Materials Science&Engineering A, 2001, 319:229-232. [35] 王刚, 沈军, 孙剑飞, 等. Zr41.25Ti13.75Ni10Cu12.5Be22.5块体非晶合金的拉伸断裂行为[J].金属学报, 2005, 41(3):291-296.WANG Gang, SHEN Jun, SUN Jianfei, et al. Tension fracture behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass[J]. Acta Metallurgica Sinica, 2005, 41(3):291-296. [36] 张庆生, 张海峰, 王爱民, 等. Zr55Al10Ni5Cu30块状非晶合金的高温压缩断裂[J].金属学报, 2002, 38(8):835-838.ZHANG Qingsheng, ZHANG Haifeng, WANG Aimin, et al. Compression fracture of bulk Zr55Al10Ni5Cu30amorphous alloy at high temperature[J]. Acta Metallurgica Sinica, 2002, 38(8):835-838. [37] SPAEPEN F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metall, 1976, 25(4):407-415. [38] 党淑娥, 廉培霞, 胡勇, 等.轧制塑性变形对Zr60Al15Ni25非晶合金的自由体积及力学性能影响[J].稀有金属材料与工程, 2010, 39(3):538-541.DANG Shue, LIAN Peixia, HU Yong, et al. Influence of rolling plastic deformation on free volume and mechanical property of Zr60Al15Ni25 amorphous alloy[J]. Rare Metal Materials and Engineering, 2010, 39(3):538-541. [39] 辛绍贺.自由体积对非晶合金剪切带形成机制影响的研究[D].秦皇岛:燕山大学, 2019.XIN Shaohe, Study on the influence of free volume on the formation mechanism of amorphous alloy shear band[D].Qinhuangdao:Yanshan University, 2019. [40] SUN B R, ZHAN Z J, BO L, et al. Fracture characteristics of bulk metallic glass under high speed impact[J]. Chinese Physics B, 2012, 21(5):424-430. [41] KERYVIN V. Indentation of bulk metallic glasses:Relationships between shear bands observed around the prints and hardness[J]. Acta Materialia, 2006, 55(8):2565-2578. [42] LI H Z, WANG J, FAN J M. Analysis and modelling of particle velocities in micro-abrasive air jet[J].International Journal of Machine Tools and Manufacture, 2009, 49(11):850-858. |