• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (15): 75-91.doi: 10.3901/JME.2022.15.075

• 特邀专栏:先进磨粒加工技术 • 上一篇    下一篇

扫码分享

钛合金超微细磨削中磨削力和加工表面质量的研究

张振宇1, 吴俊2, 宋克峰2, 郭昭志2, 程军2   

  1. 1. 沈阳飞机工业(集团)有限公司 沈阳 110819;
    2. 东北大学机械工程与自动化学院 沈阳 110819
  • 收稿日期:2021-12-06 修回日期:2022-05-03 发布日期:2022-10-13
  • 通讯作者: 程军(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为微细精密加工、磨粒可排布磨具制备与加工方法。E-mail:jcheng@mail.neu.edu.cn
  • 作者简介:张振宇,男,1984年出生。主要研究方向为超声波检测。E-mail:zzyvv@163.com
  • 基金资助:
    国防军工(2020JX04H016)、中央高校基本科研业务费专项资金(2203009)和沈阳市2021年“揭榜挂帅”重点(2021020900047)资助项目。

Study on Grinding Force and Machined Surface Quality in Ultra-fine Micro Grinding of Titanium Alloy

ZHANG Zhenyu1, WU Jun2, SONG Kefeng2, GUO Zhaozhi2, CHENG Jun2   

  1. 1. Shenyang Aircraft Corporation, Shenyang 110819;
    2. School of mechanical Engineering and Automation, Northeastern University, Shenyang 110819
  • Received:2021-12-06 Revised:2022-05-03 Published:2022-10-13

摘要: 超微细磨削是指磨削工具直径不大于100μm的磨削加工过程,它在制造由各种材料制成的微结构元器件方面具有巨大的潜力。通过磨粒轨迹仿真和理论分析的手段,系统地研究了超微细磨削加工中的加工表面质量、磨削力和磨具磨损特性。发现在超微细磨削加工中,拥有最大出刃高度的磨粒一定是有效磨粒,且拥有最大出刃高度的磨粒会在磨削表面的形成过程中起主导作用。建立了考虑磨粒粒径差异时的未变形切屑厚度模型和磨削力模型,并最终通过在钛合金上进行超微细磨削实验对磨削力模型进行了验证。实验发现,超微细磨削加工的表面质量随进给速度和径向切深的增大而变差,表面粗糙度也随着进给速度和径向切深的增大而增大。对于超微细磨削加工过程,发现加工中超微细磨具磨损迅速,而造成磨具快速磨损的原因主要是参与加工的有效磨粒数非常少。在径向切深等于1μm时,磨具上参与切削的磨粒仅占总磨粒数的12%。在大径向切深时,除有效磨粒少之外,磨具磨损迅速另一个重要的原因是未变形切屑厚度非常大,超过了磨粒所能承受的极限。

关键词: 超微细磨削, 磨具磨损, 磨削力, 加工表面质量

Abstract: Ultra-fine micro grinding refers to the grinding process in which the diameter of grinding tools is less than or equal to 100 μm.It has great potential in manufacturing microstructure components made of various materials.By means of simulation and theoretical analysis of abrasive trajectory, the machined surface quality, grinding force and grinding tool wear characteristics in ultra-fine micro grinding is systematically studied.It is found that the abrasive grain with the largest grain size must be effective abrasive grain, and the abrasive grain with the largest grain size will play a major role in the formation of machined surface in ultra-fine micro grinding.The undeformed chip thickness model and grinding force model considering the difference of the abrasive grain size are established, and finally the grinding force model is verified by ultra-fine micro grinding experiments on titanium alloy.It is found in experiment that the surface quality of ultra-fine micro grinding becomes worse with the increase of feeding velocity and radial cutting depth, and the surface roughness also increases with the increase of feeding velocity and radial cutting depth.For the ultra-fine micro grinding process, it is found that ultra-fine micro grinding tools wear rapidly, and the main reason for the rapid wear of grinding tools is that the number of effective abrasive grains involved in machining is very small.When the radial cutting depth is 1 μm, the abrasive grains involved in cutting on the grinding tools only account for 12% of the total abrasive grains.In large radial cutting depth, in addition to few effective abrasive grains, another important reason for the rapid wear of grinding tools is that the undeformed chip thickness is very large, which exceeds the limit that abrasive grains can bear.

Key words: ultra-fine micro grinding, grinding tool wear, grinding force, machined surface quality

中图分类号: