[1] DU L, ZHE J, CARLETTA J, et al. Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive Coulter counting device[J]. Microfluidics and Nanofluidics, 2010, 9(6):1241-1245. [2] WANG Z, XUE X, YIN H, et al. Research progress on monitoring and separating suspension particles for lubricating oil[J]. Complexity, 2018(5):1-9. [3] ZHU X, ZHONG C, ZHE J. Lubricating oil conditioning sensors for online machine health monitoring:A review[J]. Tribology International, 2017, 109:473-484. [4] BORDATCHEV E, AGHAYAN H, YANG J. Object shape-based optical sensing methodology and system for condition monitoring of contaminated engine lubricants[J]. Optics & Lasers in Engineering, 2014, 54:128-138. [5] XU C, ZHANG P, WANG H, et al. Ultrasonic echo waveshape features extraction based on QPSO-matching pursuit for online wear debris discrimination[J]. Mechanical Systems & Signal Processing, 2015, 60-61:301-315. [6] ISLAM T, YOUSUF M, NAUMAN M. A highly precise cross-capacitive sensor for metal debris detection in insulating oil[J]. Review of Scientific Instruments, 2020, 91(2):025005. [7] 范红波, 张英堂, 陶凤和, 等. 铁磁质磨粒形态对电感式磨粒传感器输出特性的影响[J]. 传感技术学报, 2009, 22(10):1401-1405. FAN Hongbo, ZHANG Yingtang, TAO Fenghe, et al. Effect of the ferromagnetic wear debris morphology on the output characteristic of inductive wear debris sensor[J]. Chinese Journal of Sensors and Actuators, 2009, 22(10):1401-1405. [8] 范红波, 张英堂, 陶凤和, 等. 电感式磨粒传感器中非铁磁质磨粒的磁场特性[J]. 传感器与微系统, 2010, 29(2):35-41. FAN Hongbo, ZHANG Yingtang, TAO Fenghe, et al. Magnetic characteristic of unferromagnetic wear debris in inductive wear debris sensor[J]. Transducer and Microsystem Technologies, 2010, 29(2):35-41. [9] JIA R, MA B, ZHENG C, et al. Magnetic properties of ferromagnetic particles under alternating magnetic fields:Focus on particle detection sensor applications[J]. Sensors, 2018, 18:4144. [10] DU L, ZHE J. A high throughput inductive pulse sensor for online oil debris monitoring[J]. Tribology International, 2011, 44(2):175-179. [11] 史皓天, 张洪朋, 王文琪, 等. 高精度磨粒检测传感器的设计及研究[J]. 光学精密工程, 2019, 27(9):2043-2052. SHI Haotian, ZHANG Hongpeng, WANG Wenqi, et al. Design and research of high sensitive wear debris detection sensor[J]. Optics & Precision Engineering, 2019, 27(9):2043-2052. [12] REN Y, ZHAO G, QIAN M, et al. A highly sensitive triple-coil inductive debris sensor based on an effective unbalance compensation circuit[J]. Measurement Science and Technology, 2019, 31(2):025103. [13] 贾然, 马彪, 郑长松, 等. 电感式磨粒在线监测传感器灵敏度提高方法[J]. 湖南大学学报, 2018, 45(4):129-137. JIA Ran, MA Biao, ZHENG Changsong, et al. Sensitivity improvement method of on-line inductive wear particles monitor sensor[J]. Journal of Hunan University, 2018, 45(4):129-137. [14] LI C, LIANG M. Enhancement of oil debris sensor capability by reliable debris signature extraction via wavelet domain target and interference signal tracking[J]. Measurement, 2013, 46(4):1442-1453. [15] HONG W, WANG S, LIU H, et al. A hybrid method based on band pass filter and correlation algorithm to improve debris sensor capacity[J]. Mechanical Systems and Signal Processing, 2017, 82:1-12. [16] HONG W, WANG S, TOMOVIC M, et al. A new debris sensor based on dual excitation sources for online debris monitoring[J]. Measurement Science and Technology, 2015, 26(9):095101. [17] FENG S, YANG L, QIU G, et al. An inductive debris sensor based on a high-gradient magnetic field[J]. IEEE Sensors Journal, 2019, 19(8):2879-2886. [18] LIU L, CHEN L, WANG S, et al. Improving sensitivity of a micro inductive sensor for wear debris detection with magnetic powder surrounded[J]. Micromachines, 2019, 10(7):440. [19] WU S, LIU Z, YUAN H, et al. Multichannel inductive sensor based on phase division multiplexing for wear debris detection[J]. Micromachines, 2019, 10(4):246. [20] ZHU X, DU L, ZHE J, et al. A 3×3 wear debris sensor array for real time lubricant oil conditioning monitoring using synchronized sampling[J]. Mechanical Systems and Signal Processing, 2017:296-304. [21] REN Y, LI W, ZHAO G, et al. Inductive debris sensor using one energizing coil with multiple sensing coils for sensitivity improvement and high throughput[J]. Tribology International, 2018:96-103. [22] 曾霖, 张洪朋, 滕怀波, 等. 一种船机油液多污染物检测新方法研究[J]. 机械工程学报, 2018, 54(12):125-132. ZENG Lin, ZHANG Hongpeng, TENG Huaibo, et al. Novel method for the detection of multi-contaminants in marine lubricants[J]. Journal of Mechanical Engineering, 2018, 54(12):125-132. [23] 马来好, 张洪朋, 乔卫亮, 等. 双螺线管套管结构的液压油金属颗粒检测传感器[J]. 仪器仪表学报, 2019, 40(7):216-223. MA Laihao, ZHANG Hongpeng, QIAO Weiliang, et al. Hydraulic oil metal particles detecting sensor of dual-solenoid coil with casing structure[J]. Chinese Journal of Scientific Instrument, 2019, 40(7):216-223. [24] 史皓天, 张洪朋, 顾长智, 等. 液压油污染物多参数检测传感器[J]. 仪器仪表学报, 2018, 39(11):172-179. SHI Haotian, ZHANG Hongpeng, GU Changzhi, et al. Multi-parameter sensor for hydraulic oil pollutant[J]. Chinese Journal of Scientific Instrument, 2018, 39(11):172-179. [25] 史皓天, 张洪朋, 顾长智, 等. 电感-电容双模式液压油污染物检测传感器[J]. 机械工程学报, 2020, 56(2):20-26. SHI Haotian, ZHANG Hongpeng, GU Changzhi, et al. Inductance-capacitance dual mode sensor for the detection of contaminants in hydraulic oil[J]. Journal of Mechanical Engineering, 2020, 56(2):20-26. [26] 黄刘平, 田新启. 电涡流传感器线圈等效阻抗的计算与实验分析[J]. 化工自动化及仪表, 2017, 44(1):39-43. HUANG Liuping, TIAN Xinqi. Calculation and experimental analysis of equivalent impedance of eddy current sensor coil[J]. Control and Instruments in Chemical Industry, 2017, 44(1):39-43. [27] 刘恩辰, 张洪朋, 吴瑜, 等. 油液过流速度对船舶液压油检测精度的影响[J]. 光学精密工程, 2016, 24(3):533-539. LIU Enchen, ZHANG Hongpeng, WU Yu, et al. Effect of oil velocity on sensitivity of micron metal particle detection by inductive sensor[J]. Optics & Precision Engineering, 2016, 24(3):533-539. [28] 张兴明, 张洪朋, 陈海泉, 等. 微流体油液检测芯片分辨率-频率特性研究[J]. 仪器仪表学报, 2014, 35(2):427-433. ZHANG Xingming, ZHANG Hongpeng, CHEN Haiquan, et al. Study on the resolution-frequency characteristic of microfluidic oil detection chip[J]. Chinese Journal of Scientific Instrument, 2014, 35(2):427-433. |