• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (7): 125-137.doi: 10.3901/JME.2021.07.125

• 摩擦学 • 上一篇    下一篇

扫码分享

流体支点浮瓦轴承初始工作机理分析及单瓦承载浮起特性研究

杨期江1, 李伟光2, 郭明军2, 赵学智2, 李锻能3   

  1. 1. 广州航海学院轮机工程学院 广州 510725;
    2. 华南理工大学机械与汽车工程学院 广州 510640;
    3. 广东工业大学机电工程学院 广州 510006
  • 收稿日期:2020-04-10 修回日期:2020-11-05 出版日期:2021-04-05 发布日期:2021-05-25
  • 通讯作者: 李伟光(通信作者),男,1958年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学、振动分析与控制。E-mail:Wguangli@scut.edu.cn
  • 作者简介:杨期江,男,1986年出生,博士。主要研究方向为滑动轴承及振动控制。E-mail:yangqijiang1986@163.com
  • 基金资助:
    广东省教育厅(2020KTSCX112,2020KCXTD027)和广州市高校创新创业教育(2019PT201)资助项目。

Research on Initial Working Mechanism of fluid Pivot Floating Bearing and Floating Characteristics of Single Bottom Pad Bearing

YANG Qijiang1, LI Weiguang2, GUO Mingjun2, ZHAO Xuezhi2, LI Duanneng3   

  1. 1. School of Marine Engineering, Guangzhou Maritime University, Guangzhou 510725;
    2. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640;
    3. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006
  • Received:2020-04-10 Revised:2020-11-05 Online:2021-04-05 Published:2021-05-25

摘要: 开展自生静压流体支点浮动可倾瓦轴承的润滑机理及浮起特性研究。首先推导考虑内层静压孔与外层静压腔之间的流量连续方程,提出内外层油膜厚度公式。采用有限元方法求解内层动压润滑与外层流体静压润滑Reynolds方程,分析了流体支点浮动瓦轴承初始工作机理,得出轴瓦浮起需要满足两个要求的重要结论:第一轴瓦外层具有一定的初始间隙,第二应满足一定的静压腔面积比的要求。在理论上分析了一种轴颈为100 mm的流体支点轴承,在轴承初始工作状态下,如果要满足轴瓦浮起条件,其静压腔面积比取值范围应为0.16至0.18之间。在此基础上采用Newton-Rapson法建立单瓦流体支点轴承数值迭代计算模型,分析了在单块流体支点浮动瓦承载形式时轴承静态特性随偏心率变化规律,发现在单瓦承载情况下,底瓦浮起高度与静压孔流量比随着偏心率增大而逐渐减小;在相同偏心率下,静压孔直径增大,浮起高度与静压孔流量都相应随至增大。静压腔压力、瓦块承载力、内层最大油膜压力以及内层摩擦功耗都是随着偏心率的增大而逐渐增大;此外外层摩擦功耗随着偏心率增大而增幅较小,并且在较高偏心率下,逐渐稳定,其中内层摩擦功耗比外层摩擦功耗大得多;当流体支点单瓦承载时,轴承受到静态载荷作用下,瓦块摆动角度是为0°。通过与已有文献的试验数据进行对比分析,验证了本文计算模型的准确性。

关键词: 自生静压, 流体支点, 可倾瓦, 油膜轴承, 浮起特性

Abstract: The lubrication mechanism and floating characteristics of the self hydrostatic fluid pivot floating bearing were studied. First of all, the continuous flow equation between the inner static pressure hole and the outer static pressure cavity is derived. The formula for the thickness of the oil film in the inner and outer layers and the maximum swing angle of the pad are proposed. The finite element method is used to solve the Reynolds equations of inner layer dynamic pressure lubrication and outer layer hydrostatic pressure lubrication. The initial working mechanism of the fluid pivot floating bearing was analyzed. The important conclusion that the bearing floating needs to meet two requirements is obtained: the outer layer of the first bearing bush has a certain initial gap; the second should meet the requirements of a certain static pressure cavity area ratio. In theory, a fluid pivot bearing with a journal of 100 mm is analyzed in the initial working state. If the condition of bearing shell floating is to be satisfied, that is, the outer oil film force is greater than or equal to the inner oil film force, the ratio of the area of the static pressure cavity should be between 0.16 and 0.18. On this basis, the Newton-Rapson method is used to establish a numerical iterative calculation model for single-pad fluid pivot bearings. The variation of the bearing static characteristics with the eccentricity is analyzed when the single-pad fluid pivot floating bearing is loaded. Under the load of a single pad, the ratio of the floating height of the bottom and the flow rate of the static pressure orifice gradually decreases as the eccentricity increases. At the same eccentricity, the diameter of the static pressure hole increases, and the floating height and the flow rate of the static pressure hole increase accordingly. The pressure of the static pressure chamber, the bearing capacity of the pad, the maximum oil film pressure of the inner layer and the friction power consumption of the inner layer all gradually increase with the increase of the eccentricity. In addition, the frictional power consumption of the outer layer increases less as the eccentricity increases, and gradually stabilizes at a higher eccentricity. The inner friction power consumption is much larger than the outer friction power consumption. When the fluid pivot single pad is loaded, and the bearing is subjected to static load, the pad swing angle is 0 °.By comparing with the experimental data of the existing literature, the accuracy of the calculation model in this paper is verified.

Key words: self-hydrostatic, fluid pivot, tilting pad, oil film bearing, floating characteristics

中图分类号: