• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (5): 72-80.doi: 10.3901/JME.2021.05.072

• 机器人及机构学 • 上一篇    下一篇

扫码分享

数控驱动的移动铣削机器人精度提升方法

文科1, 张加波1,2, 乐毅1, 周莹皓1, 杨继之1, 陈钦韬1   

  1. 1. 中国空间技术研究院北京卫星制造厂有限公司 北京 100094;
    2. 北京理工大学机械与车辆学院 北京 100081
  • 收稿日期:2020-03-24 修回日期:2020-07-09 出版日期:2021-03-05 发布日期:2021-04-28
  • 通讯作者: 张加波(通信作者),男,1981年出生,博士,研究员。主要研究方向为数控及智能制造、机构装配集成。E-mail:airforce_81@163.com
  • 作者简介:文科,男,1986年出生,博士,高级工程师。主要研究方向为机器人技术与测量辅助制造。E-mail:rongyu_wen@163.com;乐毅,男,1982年出生,博士研究生,高级工程师。主要研究方向为移动机器人集成与数控加工技术。E-mail:yuebuaa@sina.com
  • 基金资助:
    国家自然科学基金(62003346,52075533,61801030)和装备预研航天科技联合基金(6141B061401)。

Method for Improving Accuracy of NC-driven Mobile Milling Robot

WEN Ke1, ZHANG Jiabo1,2, YUE Yi1, ZHOU Yinghao1, YANG Jizhi1, CHEN Qintao1   

  1. 1. Beijing Spacecrafts, China Academy of Space Technology, Beijing 100094;
    2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081
  • Received:2020-03-24 Revised:2020-07-09 Online:2021-03-05 Published:2021-04-28

摘要: 移动铣削机器人原位加工作业是解决大型复杂构件高效高精制造的有效途径,其定位精度是重要的技术指标,对大型复杂构件的最终制造质量意义重大。针对现有的移动机器人存在的控制器开放性不足、集成性差所导致多数据通信受限、补偿方法实现困难、NC代码功能缺失等问题,提出了一种数控驱动的移动铣削机器人精度提升方法。研究数控驱动的移动铣削机器人系统,构建总线通信架构,实现840Dsl数控驱动的移动机器人控制;提出机器人关节光栅闭环控制原理与光栅螺距补偿方法,实现移动机器人自重与外加负载的光栅补偿;提出基于几何约束与两步误差的机器人运动学参数辨识方法,解决坐标系对齐,避免角度误差被距离误差淹没;提出空间网格分割的移动机器人高精度定位方法,实现非几何误差补偿。通过试验设计、对比、验证,数控驱动的移动铣削机器人精度提升方法将定位精度从毫米级提升至0.11 mm,证明上述方法的有效性与正确性,为移动铣削机器人的广泛应用奠定基础。

关键词: 数控驱动, 参数辨识, 精度提升, 移动铣削机器人, 大型复杂构件

Abstract: The in-situ machining operation of mobile milling robot is an effective way to solve the high-efficiency and high-precision manufacturing of large and complex components. Its positioning accuracy is an important technical indicator and has great significance for the final manufacturing quality. In order to solve the problems such as the limitation of multi data communication, the difficulty of compensation method and the lack of NC code function caused by the lack of openness and integration of the existing mobile robot controller, a method for improving the accuracy of NC-driven mobile milling robot was proposed. The NC-driven mobile milling robot system is researched, and the bus communication architecture is constructed to realize the control of 840Dsl NC-driven mobile robot. The closed-loop control principle of the robot joint grating and the grating pitch compensation method are proposed to realize the compensation of the self-weight and the external load of the mobile robot. A method of robot kinematic parameter identification based on geometric constraints and two-step error is proposed, which solves the alignment of the coordinate system and avoids the angular error from being drowned by the distance error. A high-precision positioning method for mobile robot based on spatial grid segmentation is proposed to achieve non-geometric error compensation. Through experimental design, comparison, and verification, the accuracy improvement method of the NC-driven mobile milling robot improves the positioning accuracy from millimetre level to 0.11 mm, which proves the validity and correctness of the above method and lays the foundation for the widespread application of mobile milling robots.

Key words: NC-driven, parameter identification, accuracy improvement, mobile milling robot, large and complex components

中图分类号: