[1] BRICARD R. Mémoire sur la théorie de l'octaèdre articulé[J]. Journal de Mathématiques pures et appliquées, 1897, 3:113-148. BRICARD R. Memoir on the theory of articulated octahedra[J]. Journal of Pure and Applied Mathematics, 1897, 3:113-148. [2] BRICARD R. Leçons de Cinématique, T. II[M]. Paris:Gauthier-Villars, 1927. BRICARD R. Kinematics lessons, T. II[M]. Paris:Gauthier-Villars, 1927. [3] ALTMANN P G. Communications to Grodzinski, P. and M'Ewen, E, Link mechanisms in modern kinematics[J]. Proceedings of the Institution of Mechanical Engineers, 1954, 168(37):889-896. [4] WOHLHART K. A new 6R space mechanism[C]//Proceedings of the seventh world congress on the theory of machines and mechanisms, Sevilla, Spain. 1987:193-198. [5] BRÁT V. A six-link spatial mechanism[J]. Journal of Mechanisms, 1969, 4(4):325-336. [6] HARTENBERG R S, DENAVIT J. A kinematic notation for lower pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1955, 22(2):215-221. [7] BAKER J E. An analysis of the Bricard linkages[J]. Mechanism and machine Theory, 1980, 15(4):267-286. [8] BAKER J E. On the skew network corresponding to Bricard's doubly collapsible octahedron[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2009, 223(5):1213-1221. [9] WOHLHART K. The two types of the orthogonal Bricard linkage[J]. Mechanism and Machine Theory, 1993, 28(6):809-817. [10] CHEN Y, YOU Z. A 6R foldable frame and its bifurcations[C]//ASME/IFTOMM International Conference on Reconfigurable Mechanisms & Robots. IEEE, 2009:95-103. [11] CHEN Y, YOU Z, TARNAI T. Threefold-symmetric Bricard linkages for deployable structures[J]. International Journal of Solids and Structures, 2005, 42(8):2287-2301. [12] CHEN Y, YOU Z. Two-fold symmetrical 6R foldable frame and its bifurcations[J]. International Journal of Solids and Structures, 2009, 46(25-26):4504-4514. [13] CHEN Y, CHAI W H. Bifurcation of a special line and plane symmetric Bricard linkage[J]. Mechanism and Machine Theory, 2011, 46(4):515-533. [14] ZHANG K, DAI J S. A kirigami-inspired 8R linkage and its evolved overconstrained 6R linkages with the rotational symmetry of order two[J]. Journal of Mechanisms and Robotics, 2014, 6(2):021007. [15] ZHANG K, DAI J S. Screw-system-variation enabled reconfiguration of the Bennett plano-spherical hybrid linkage and its evolved parallel mechanism[J]. Journal of Mechanical Design, 2015, 137(6):062303. [16] KONG X. Type synthesis of single-loop overconstrained 6R spatial mechanisms for circular translation[J]. Journal of Mechanisms and Robotics, 2014, 6(4):041016. [17] KONG X, HE X, LI D. A double-faced 6R single-loop overconstrained spatial mechanism[J]. Journal of Mechanisms and Robotics, 2018, 10(3):031013. [18] LÓPEZ-CUSTODIO P C, DAI J S, RICO J M. Branch reconfiguration of Bricard linkages based on toroids intersections:Plane-symmetric case[J]. Journal of Mechanisms and Robotics, 2018, 10(3):031002. [19] LÓPEZ-CUSTODIO P C, DAI J S, RICO J M. Branch reconfiguration of Bricard linkages based on toroids intersections:Line-symmetric case[J]. Journal of Mechanisms and Robotics, 2018, 10(3):031003. [20] FENG H, CHEN Y, DAI J S, et al. Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations[J]. Mechanism and Machine Theory, 2017, 116:89-104. [21] CHAI X, DAI J S. Three novel symmetric waldron-bricard metamorphic and reconfigurable mechanisms and their isomerization[J]. Journal of Mechanisms and Robotics, 2019, 11(5):051011. [22] HUANG H, LI B, ZHANG T, et al. Design of large single-mobility surface-deployable mechanism using irregularly shaped triangular prismoid modules[J]. Journal of Mechanical Design, 2019, 141(1):012301. [23] HUANG H, LI B, ZHU J, et al. A new family of Bricard-derived deployable mechanisms[J]. Journal of Mechanisms and Robotics, 2016, 8(3):034503. [24] LU S, ZLATANOV D, DING X, et al. A network of type III Bricard linkages[J]. Journal of Mechanisms and Robotics, 2019, 11(1):011013. [25] QI X, HUANG H, MIAO Z, et al. Design and mobility analysis of large deployable mechanisms based on plane-symmetric Bricard linkage[J]. Journal of Mechanical Design, 2017, 139(2):022302. [26] WANG J, KONG X. A novel method for constructing multimode deployable polyhedron mechanisms using symmetric spatial compositional units[J]. Journal of Mechanisms and Robotics, 2019, 11(2):020907. [27] LIU R, LI R, YAO Y. Reconfigurable deployable Bricard-like mechanism with angulated elements[J]. Mechanism and Machine Theory, 2020:103917. [28] 秦波, 吕胜男, 刘全, 等. 可展收抛物柱面天线机构的设计及分析[J]. 机械工程学报, 2020, 56(5):100-107. QIN Bo, LÜ Shengnan, LIU Quan, et al. Structural design and analysis of a deployable parabolic-cylinder antenna[J]. Journal of Mechanical Engineering, 2020, 56(5):100-107. [29] 李端玲, 董凯捷, 刘利捷, 等. 基于正棱锥可展单元的球形雷达校准机构的设计方法及研究[J]. 机械工程学报, 2020, 56(5):123-132. LI Duanling, DONG Kaijie, LIU Lijie, et al. Design method and research of spherical radar calibration mechanism based on positive pyramid expandable unit[J]. Journal of Mechanical Engineering, 2020, 56(5):123-132. [30] 杨栋皓, 曹文熬, 丁华锋. 基于新型两层两环连杆的一族伞状可展机构的构型综合[J]. 机械工程学报, 2020, 56(5):150-160. YANG Donghao, CAO Wenao, DING Huafeng. Type synthesis of a family of umbrella-shaped deployable mechanisms based on new two-layer and two-loop linkages[J]. Journal of Mechanical Engineering, 2020, 56(5):150-160. [31] SUN X, LI R, XUN Z, et al. A multiple-mode mechanism composed of four antiparallelogram units and four revolute joints[J]. Mechanism and Machine Theory, 2021, 155:104106. [32] SUN X, LI R, XUN Z, et al. A new Bricard-like mechanism with anti-parallelogram units[J]. Mechanism and Machine Theory, 2020, 147:103753. |