机械工程学报 ›› 2022, Vol. 58 ›› Issue (16): 160-177.doi: 10.3901/JME.2022.16.160
程诚1, 黄祖树1, 韩聪2, 白雪山3, 马子奇4, 徐勇5, 贺子芮6, 郭训忠1
收稿日期:
2021-05-20
修回日期:
2021-09-18
出版日期:
2022-08-20
发布日期:
2022-11-03
作者简介:
程诚,男,1991年出生,博士,讲师,硕士研究生导师。主要研究方向为金属管材三维自由弯曲成形技术及装备。E-mail:c_cheng@nuaa.edu.cn;基金资助:
CHENG Cheng1, HUANG Zushu1, HAN Cong2, BAI Xueshan3, MA Ziqi4, XU Yong5, HE Zirui6, GUO Xunzhong1
Received:
2021-05-20
Revised:
2021-09-18
Online:
2022-08-20
Published:
2022-11-03
摘要: 随着人们对个性化定制产品的需求越来越多和对产品更新换代的速度要求越来越高,金属柔性制造技术作为当今世界制造技术发展的前沿科技越来越受到工业界的关注和推广。柔性成形技术作为柔性制造技术一个重要分支,是指在无模具或少用模具(仅使用通用模具)的条件下,通过控制成形工具的三维空间运动轨迹,使坯料沿特定方向产生一定的塑性变形从而获得相应力学性能、形状和尺寸精度的一种技术。相对于传统塑性成形技术,柔性成形技术在新品试制,多品种、小批量产品生产,复杂金属构件研制等方面具有独特优势。近些年来,随着对柔性及柔性制造认识不断深入,柔性成形技术的内涵也不断得到丰富和发展,涌现出许多新的柔性成形技术以及成功的应用案例。尝试从目标金属薄壁构件结构类型的视角鸟瞰柔性成形技术的最新进展。通过将柔性成形技术划分为管材、型材、板材柔性成形技术,针对每一种目标构件类型所适用的柔性成形技术的最新应用进展、技术原理及最新发展状况等内容进行综述。
中图分类号:
程诚, 黄祖树, 韩聪, 白雪山, 马子奇, 徐勇, 贺子芮, 郭训忠. 基于三维空间轨迹控制的柔性成形技术研究进展[J]. 机械工程学报, 2022, 58(16): 160-177.
CHENG Cheng, HUANG Zushu, HAN Cong, BAI Xueshan, MA Ziqi, XU Yong, HE Zirui, GUO Xunzhong. State-of-art of Flexible Forming Technology Based on Three-dimensional Trajectory Control[J]. Journal of Mechanical Engineering, 2022, 58(16): 160-177.
[1] SAREN S K, TIBERIU V. Review of flexible manufacturing system based on modeling and simulation[J]. Fascicle of Management and Technological Engineering, 2016, 24(14): 113-118. [2] KAUSHAL A, VARDHAN A, RAJPUT R S. Flexible manufacturing system. A modern approach to manufacturing technology[J]. International Refereed Journal of Engineering and Science, 2016, 5(4): 16-23. [3] YANG D Y, BAMBACH M, CAO J, et al. Flexibility in metal forming[J]. CIRP Annals-Manufacturing Technology, 2018, 67(2): 743-765. [4] MURATA M. Effects of inclination of die and material of circular tube in MOS bending method[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1997, 62(601): 3669-3675. [5] GUO Xunzhong, XIONG Hao, LI Heng, et al. Forming characteristics of tube free-bending with small bending radii based on a new spherical connection[J]. International Journal of Machine Tools and Manufacture, 2018, 133: 72-84. [6] SUN Bo, QIU Mingxing, TIAN Jing, et al. Research on design and process of external titanium alloy tube for aeroengine[J]. Aeronautical Manufacturing Technology, 2015, 493(Suppl. 2): 124-128. 孙博, 邱明星, 田静, 等. 航空发动机用钛合金外部管路设计及工艺研究[J]. 航空制造技术, 2015, 493(增刊2): 124-128. [7] MURATA M. Effect of die profile and aluminum circular tube thickness with MOS bending[J]. Journal of Japan Institute of Light Metals, 1996, 46(12): 626-631. [8] MURATA M. Experimental study of square tube bending by MOS bending method[J]. Journal of the Japan Society for Technology of Plasticity, 1996, 37(424): 515-520. [9] GANTNER P, BAUER H, HARRISON D K, et al. Free-bending-A new bending technique in the hydroforming process chain[J]. Journal of Materials Processing Technology, 2005, 167(2): 302-308. [10] GANTNER P, HARRISON D K, DE SILVA A K, et al. The development of a simulation model and the determination of the die control data for the free-bending technique[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2007, 221(2): 163-171. [11] CHATTI S, HERMES M, TEKKAYA A E, et al. The new TSS bending process: 3D bending of profiles with arbitrary cross-sections[J]. CIRP Annals, 2010, 59(1): 315-318. [12] LI Pengfei, WANG Liyan, LI Mingzhe. Flexible-bending of profiles with asymmetric cross-section and elimination of side bending defect[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9): 2853-2859. [13] SUN Shuo, FU Wenzhi, LI Mingzhe, et al. Effect of forming parameters on flexible-bending of three-dimensional tubes[J]. Materials Science Forum, 2018, 937: 69-76. [14] LI Pengfei, WANG Liyan, LI Mingzhe. Flexible-bending of profiles and tubes of continuous varying radii[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5): 1669-1675. [15] ZHANG Zengkun, WU Jianjun, SHANG Qi, et al. Investigation to forming and springback of spatial tubes in bending-twisting process[J]. Aeronautical Manufacturing Technology, 2018, 61(16): 26-31. 张增坤, 吴建军, 尚琪, 等. 空间管件弯扭组合加载成形及回弹规律研究[J]. 航空制造技术, 2018, 61(16): 26-31. [16] SHANG Qi, QIAO Shuncheng, WU Jianjun, et al. Research on bending transition zone of tube and springback control[J]. Journal of Plasticity Engineering, 2020, 27(1): 38-45. 尚琪, 乔顺成, 吴建军, 等. 管件弯曲过渡区研究及回弹控制[J]. 塑性工程学报, 2020, 27(1): 38-45. [17] MA Yannan. Research on three-dimensional free bending of metal tube[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. 马燕楠. 金属管材三维自由弯曲成形研究[D]. 南京: 南京航空航天大学, 2018. [18] GUO Xunzhong, MA Yannan, CHEN Wenliang, et al. Simulation and experimental research of the free bending process of a spatial tube[J]. Journal of Materials Processing Technology, 2018, 255: 137-149. [19] KATAI H, ICHIRYU K. Development of CNC bending machine using 6-axis parallel kinematics mechanism[J]. The Proceedings of the JSME Annual Meeting, 2004, 4: 75-76. [20] KAWASUMI S, TAKEDA Y, MATSUURA D. Precise pipe-bending by 3-RPSR parallel mechanism considering springback and clearances at dies[J]. Transactions of the Japan Society of Mechanical Engineers, 2014, 80(820): 343. [21] GUO Xunzhong, MA Yannan, XU Yong, et al. State-of-the-arts in 3D free bending technology and the future application in aviation manufacture[J]. Aeronautical Manufacturing Technology, 2016(Suppl. 2): 16-24. 郭训忠, 马燕楠, 徐勇, 等. 三维自由弯曲成形技术及在航空制造业中的潜在应用[J]. 航空制造技术, 2016(增刊2): 16-24. [22] TAO Jie, XIONG Hao, WAN Bofang, et al. 3D free-bending forming equipment and key technology[J]. Journal of Netshape Forming Engineering, 2018, 10(4): 1-13. 陶杰, 熊昊, 万柏方, 等. 三维自由弯曲成形装备及其关键技术[J]. 精密成形工程, 2018, 10(4): 1-13. [23] TAKEDA Y, INADA S, KAWASUMI S, et al. Kinematic design of 3-RPSR paralle mechanism for movable-die drive mechanism of pipe bender[J]. The Romanian Journal of Technical Sciences Applied Mechanics, 2013, 58(1-2): 49-74. [24] LI Heng, YANG He, ZHAN Mei, et al. Role of mandrel in NC precision bending process of thin-walled tube[J]. International Journal of Machine Tools and Manufacture, 2007, 47(7-8): 1164-1175. [25] REN Ning. Study on deformation compatibility and bending limit in steel welded tube NC bending processes[D]. Xi'an: Northwestern Polytechnical University, 2013. 任宁. 钢焊管数控弯曲变形协调规律及成形极限研究[D]. 西安: 西北工业大学, 2013. [26] WEIGMANN U, WALKER T. Bending apparatus comprising a workpiece guide by more articulated robot: Germany, DE102018108862[P]. 2019-10-17. [27] HAMMERER P, DIEPOLDER K, HANNER J. Bending apparatus for elongated workpieces: Germany, DE102018108863[P]. 2019-10-17. [28] Wafios Machinery Corporation. Robot control integrated into Wafios CNC tube bending machine[EB/OL]. [2021-03-20]. https://www.thefabricator.com/tubepipejournal/product/bending/robot-control-integrated-into-wafios-cnc-tube-bending-machine. [29] TERUAKI Y. Bending processing device: South Korea, KR1020050089747[P]. 2006-05-19. [30] TERUAKI Y. Bending machine: USA, US20200353523A1[P]. 2020-11-12. [31] TAKUYA K, TERUAKI Y. Bending processing system: South Korea, KR1020157008509[P]. 2016-01-22. [32] DAI Zhiyang, GUO Qinyang, SUN Bin, et al. A robot bending method and bending device: China, CN111659780A[P]. 2020-09-15. 戴智洋, 郭秦阳, 孙斌, 等. 一种机器人弯管加工方法及弯管加工装置: 中国, CN111659780A[P]. 2020-09-15. [33] CHEN Yunfei. Seven axis bending robot: China, CN103785725A[P]. 2014-05-14. 陈云飞. 七轴弯管机器人: 中国, CN103785725A[P]. 2014-05-14. [34] Opton Co. Ltd. CNC pipe bender series[EB/OL]. [2021-03-20]. http://www.opton.co.jp/en/products/pipebender/. [35] Manufacturing News. Robots as efficient tube bending machines[EB/OL]. [2021-03-20]. https://www.mfgnewsweb.com/archives/4/57727/Metalforming-Fabricating-Waterjet-dec20/Robots-as-Efficient-Tube-Bending-Mac-hines.aspx. [36] YOO J, JO M C, JO M C, et al. Effects of Ti alloying on resistance to hydrogen embrittlement in(Nb plus Mo)-alloyed ultra-high-strength hot-stamping steels[J]. Materials Science and Engineering: A, 2020, 791: 139763. [37] SHIMADA N, TOMIZAWA A, KUBOTA H, et al. Development of three-dimensional hot bending and direct quench technology[J]. Procedia Engineering, 2014, 81: 2267-2272. [38] TOMIZAWA A, SHIMADA N, KUBOTA H, et al. Forming characteristics in three-dimensional hot bending and direct quench process[J]. Journal of the Japan Society for Technology of Plasticity, 2015, 56(658): 961-966. [39] KUBOTA H, TOMIZAWA A, OKADA N. Formable range in three-dimensional hot bending and direct quench process: Development of three-dimensional hot bending and direct quench technology 2nd 4eport[J]. Journal of the Japan Society for Technology of Plasticity, 2016, 57(668): 879-885. [40] KUBOTA H, TOMIZAWA A, YAMAMOTO K, et al. Finite element analysis of three-dimensional hot bending and direct quench process considering phase transformation and temperature distribution by induction heating[J]. ISIJ International, 2014, 54(8): 1856-1865. [41] HAMASAKI Y, YUMOTO A. Automotive solution(2): Equipments development of 3-dimensional hot bending and direct quench(3DQ)[J]. Nippon Steel Sumitomo Metal Tech. Rep., 2016, 112: 74-80. [42] TOMIZAWA A, SOEDJATMIKO H S, UEMATSU K, et al. Crash characteristics of partially quenched curved products by three-dimensional hot bending and direct quench[J]. Metals, 2020, 10(10): 1322. [43] UEMATSU K, SHIMADA N, TOMIZAWA A, et al. Development of three-dimensional hot bending and direct quench using robot[C]// 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). November28-30, 2015. Okinawa, Japan. Piscataway: IEEE, 2015: 165-171. [44] YAN Yu, LI Qiang. FEM modeling and mechanics analysis of flexible roll forming[J]. Applied Mechanics and Materials, 2011, 44: 132-137. [45] WANG Guiyong. Research on variable time-domain discrete interpolation control method in flexible roll forming[D]. Beijing: North China University of Technology, 2011. 王贵勇. 柔性辊弯成型可变时域的离散插补控制方法研究[D]. 北京: 北方工业大学, 2011. [46] NAKATA T, TAKIGUCHI H. Flexible roll forming[J]. Journal of the JSTP, 2010, 51(591): 302-307. [47] Ortic AB. This is Flexible 3D roll forming[EB/OL]. [2021-04-20]. https://www.ortic.se/flexible-3d-roll-forming. [48] LINDGREN M, INGMARSSON L O. 3D roll-forming of hat-profile with variable depth and width[C]//1st International congress on roll forming, Rollform'09, October 14-15, 2009, Bilbao, Spain. País Vasco: ICRF, 2009: 1-8. [49] GROCHE P, ZETTLER A, BERNER S, et al. Development and verification of a one-step-model for the design of flexible roll formed parts[J]. International Journal of Material Forming, 2011, 4(4): 371-377. [50] GROCHE P, BREITENBACH G, JOCKEL M, et al. New tooling concepts for future roll forming application[C]//The 4th International Conference on Industrial Tools(ICIT2003), April 8-12, 2003, Beld, Slovenia. Celje: TECOS, 2003: 121-126. [51] ONA H. Study on development of intelligent roll forming machine[C]//Proceeding of 8th International Conference on Technology of Plasticity, October 9-13, 2005, Verona, Italy. Berlin: Springer, 2005: 503-504. [52] SEDLMAIER A, DIETL T, HARRASSER J. 3D roll forming in automotive industry[C]//Research Association for Steel Application. Proceedings of the 5th International Conference on Steels in Cars and Trucks, June18-22, 2017. Noordwijkerhout, The Netherlands. Amsterdam: SCT, 2017: 18-22. [53] ABEYRATHNA B, ROLFE B, HARRASSER J, et al. Prototyping of automotive components with variable width and depth[C]//6th IDDRG Conference -Materials Modelling and Testing for Sheet Metal Forming, July2-6, 2017, Munich, Germany. London: IOPscience, 2017: 1-8. [54] ABEYRATHNA B, ROLFE B, PAN L, et al. Flexible roll forming of an automotive component with variable depth[J]. Advances in Materials and Processing Technologies, 2016, 2(4): 527-538. [55] ABEYRATHNA B, ROLFE B, HODGSON P, et al. An extension of the flower pattern diagram for roll forming[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9): 1683-1695. [56] AI Zhengqing, LIU Jiying, HAN Fei, et al. Research improvement of variable section flexible roll forming technology at home and abroad[J]. Automobile & Parts, 2010(19): 34-36. 艾正青, 刘继英, 韩飞, 等. 变截面柔性辊弯成型技术的国内外研究进展[J]. 汽车与配件, 2010(19): 34-36. [57] CHEN Xiaoyu, YANG Zhenfeng. Finite element simulation and application of variable cross-section roll forming with static mould and kinetic roll[J]. Journal of Henan Science and Technology, 2020(7): 41-46. 陈晓宇, 阳振峰. 定模动辊变截面辊弯成形有限元仿真与应用[J]. 河南科技, 2020(7): 41-46. [58] XUE Weiqiang. Research on forming mechanism of local heating roll-die forming of ultra high strength steel[D]. Beijing: North China University of Technology, 2019. 薛维强. 超高强钢局部加热辊模成形机理研究[D]. 北京: 北方工业大学, 2019. [59] WANG Yingshuang. FEA modeling and processes analysis of three dimensional flexible roll forming[D]. Beijing: North China University of Technology, 2014. 王英爽. 三维辊压成形有限元建模及工艺分析[D]. 北京: 北方工业大学, 2014. [60] LIANG Jinhua. Optimization of high-strength steel variable cross section roll forming Interpolation control strategy[D]. Beijing: North China University of Technology, 2014. 梁锦华. 高强钢变截面辊弯成形插补控制算法优化[D]. 北京: 北方工业大学, 2014. [61] LI Yanle, CHEN Xiaoxiao, LI Fangyi, et al. Research development on incremental sheet metal forming process[J]. Journal of Netshape Forming Engineering, 2017, 9(1): 1-9. 李燕乐, 陈晓晓, 李方义, 等. 金属板材数控渐进成形工艺的研究进展[J]. 精密成形工程, 2017, 9(1): 1-9. [62] MO Jianhua, HAN Fei. State of the arts and latest research on incremental sheet NC forming technology[J]. China Mechanical Engineering, 2008(4): 491-497. 莫健华, 韩飞. 金属板材数字化渐进成形技术研究现状[J]. 中国机械工程, 2008(4): 491-497. [63] TONG Junze, TAO Guanqi, ZHU Hu. Research on fabrication of metal convex LOGO based on CNC incremental forming[J]. Machine Building & Automation, 2019, 48(6): 104-106. 佟珺泽, 陶冠岐, 朱虎. 基于数控渐进成形的金属凸出LOGO制作研究[J]. 机械制造与自动化, 2019, 48(6): 104-106. [64] YANG D Y, BAMBACH M, CAO J, et al. Flexibility in metal forming[J]. CIRP Annals-Manufacturing Technology, 2018, 67(2): 743-765. [65] FIORENTINO A, FERITI G C, GIARDINI C, et al. Part precision improvement in incremental sheet forming of not axisymmetric parts using an artificial cognitive system[J]. Journal of Manufacturing Systems, 2015, 35: 215-222. [66] CHANG Zhidong, LI Ming, CHEN Jun. Analytical modeling and experimental validation of the forming force in several typical incremental sheet forming processes[J]. International Journal of Machine Tools and Manufacture, 2019, 140: 62-76. [67] ZHU Hu, XIAO Dongxuan, KANG Jaeguan. Research on the double-sided incremental forming toolpath planning and generation based on STL model[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1): 839-856. [68] LI Zhengfang, LU Shihong, ZHANG Tao, et al. Electric assistance hot incremental sheet forming: an integral heating design[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9): 3209-3215. [69] YAN Siliang. Modelling based study on mechanism of electromagnetic incremental forming of thin-walled aluminum component[D]. Xi'an: Northwestern Polytechnical University, 2017. 严思梁. 基于建模的铝合金薄壁件电磁渐进成形机理研究[D]. 西安: 西北工业大学, 2017. [70] BEHERA A K, DE SOUSA R A, INGARAO G, et al. Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015[J]. Journal of Manufacturing Processes, 2017, 27: 37-62. [71] KREIMEIER D, ZHU J, LAURISCHKAT R. Integrated process design for two robots based incremental sheet metal forming[J]. Key Engineering Materials, 2012, 504: 877-882. [72] ESWIET J, MICARI F, HIRT G, et al. Asymmetric single point incremental forming of sheet metal[J]. CIRP annals, 2005, 54(2): 88-114. [73] MEIER H, LAURISCHKAT R, ZHU J. A model based approach to increase the part accuracy in robot based incremental sheet metal forming[J]. AIP Conference Proceedings, 2011, 1315(1): 1407-1412. [74] PANITI I, SOMLÓ J. Novel incremental sheet forming system with tool-path calculation approach[J]. Acta Polytechnica Hungarica, 2014, 11(7): 43-60. [75] WANG Y, HUANG Y, CAO J, et al. Experimental study on a new method of double side incremental forming[C]// International Manufacturing Science and Engineering Conference, October 7-10, 2008. Evanston, USA. New York: ASME, 2008: 601-607. [76] STöRKLE D D, MöLLENSIEP D, THYSSEN L, et al. Geometry-dependent parameterization of local support in robot-based incremental sheet forming[J]. Procedia Manufacturing, 2018, 15: 1164-1169. [77] SANG Wengang, WANG Huabi. Present situation and development of sheet metal incremental forming technology[J]. Beijing: China Scientific Papers Online, 2015, 8(23): 2420-2426. 桑文刚, 王华毕. 金属板料渐进成形技术现状及发展[J]. 中国科技论文在线精品论文, 2015, 8(23): 2420-2426. [78] LAN Hongkai, LIU Cungen, WANG Xuefeng, et al. Review of plate forming by line heating for ship hull[J]. Shipbuilding of China, 2019, 60(2): 207-216. 兰宏凯, 柳存根, 汪学锋, 等. 船体曲板热成型工艺方法研究综述[J]. 中国造船, 2019, 60(2): 207-216. [79] WANG Shun, HOU Lixun, WANG Ji, et al. Research progress of thermal working forming technologies for complex curved hull plates[J]. Hot Working Technology, 2019, 48(21): 1-4, 9. 王顺, 侯立勋, 汪骥, 等. 船舶复杂曲板热加工成形工艺研究进展[J]. 热加工工艺, 2019, 48(21): 1-4, 9. [80] SHIN J G, LEE J H, PARK A S K. A numerical thermoplastic analysis of line heating processes for saddle-type shells with the application of an artificial neural network[J]. Journal of Ship Production, 1999, 15: 10-20. [81] KOENIG P C, NARITA H, BABA K. Lean production in the Japanese shipbuilding industry[J]. Journal of Ship Production, 2002, 18(3): 167-174. [82] ZHANG Xin, YUAN Chao, ZHANG Gang, et al. Research on system of robot for hull steel plate bending by line heating[J]. Robot, 2002, 24(5): 418-420, 442. 张鑫, 员超, 张刚, 等. 大型复杂曲面钢板水火成型机器人系统研究[J]. 机器人, 2002, 24(5): 418-420, 442. [83] LIU Siliang, CHENG Lianglun. A research of motion trajectory optimization for large curvature of ship hull plate processing line robot[J]. Journal of Guangdong University of Technology, 2017, 34(1): 84-89. 刘斯亮, 程良伦. 大曲率船体外板水火加工机器人运动轨迹优化研究[J]. 广东工业大学学报, 2017, 34(1): 84-89. [84] HUANG Haojian. Expert system of intelligent hydro thermal forming robot[D]. Guangzhou: Guangdong University of Technology, 2016. 黄浩坚. 智能水火弯板成形机器人专家系统[D]. 广州: 广东工业大学, 2016. [85] LI Hongpeng, BI Qiang, TIAN Dawei, et al. A new type of automatic hydroforming equipment for cantilevered double curvature hull shell: China, CN104226758A[P]. 2014-12-24. 李洪鹏, 毕强, 田大微, 等. 新型悬臂式双曲度船体外板自动化水火弯成形设备: 中国, CN104226758A[P]. 2014-12-24. [86] WANG Jiangchao, YI Bin, ZHANG Chuhan, et al. Experiments of double curvature plate bending with induction heating and processing parameters investigation by computational analysis[J]. Ocean Engineering, 2019, 192: 106596. [87] ZHOU Wentao. Research on laser forming process for undevelopable plates[D]. Shanghai: Shanghai Jiao Tong University, 2018. 周文韬. 不可展曲板的激光热成形工艺规划研究[D]. 上海: 上海交通大学, 2018. [88] WANG J, YI B, ZHANG C, et al. Experiments of double curvature plate bending with induction heating and processing parameters investigation by computational analysis[J]. Ocean Engineering, 2019, 192: 106596. [89] ZHANG Shuiming, LIU Cungen, WANG Xuefeng. Temperature and deformation analysis of ship hull plate by moving induction heating using double-circuit inductor[J]. Marine Structures, 2019, 65: 32-52. [90] XU Yu, ZHANG Jixiang. Research on the relation between forming parameters and deformation of plate by high frequency induction heating[J]. Modern Machinery, 2019(2): 93-97. 徐昱, 张继祥. 高频感应加热弯板成型加工参数与板材变形关系研究[J]. 现代机械, 2019(2): 93-97. [91] MUSIC O, ALLWOOD J M, KAWAI K. A review of the mechanics of metal spinning[J]. Journal of Materials Processing Technology, 2010, 210(1): 3-23. [92] MUSIC O, ALLWOOD J M. Flexible asymmetric spinning[J]. CIRP Annals—Manufacturing Technology, 2011, 60: 319-322. [93] HAN Xiuquan. Development of advanced manufacturing technology for aeronautic sheet forming[J]. Aeronautical Manufacturing Technology, 2013(18): 70-73. 韩秀全. 典型先进航空钣金制造技术研究进展[J]. 航空制造技术, 2013(18): 70-73. [94] ARUNKUMAR R, CHANDRAMOHAN G. Forming of hemispherical and hemi-ellipsoidal parts of low carbon steel sheet by mandrel free metal spinning process[J]. International Journal of Material Forming, 2019, 12(5): 801-814. [95] ZHANG Xiaoxin, WANG Jin, LU Guodong, et al. Spinning of curvilinear generatrix parts without mandrel based on main and auxiliary rollers[J]. Forging & Stamping Technology, 2017, 42(10): 86-95. 张晓鑫, 王进, 陆国栋, 等. 基于主辅旋轮的曲母线件无芯模旋压成形[J]. 锻压技术, 2017, 42(10): 86-95. [96] RUSSO I M, CLEAVER C J, ALLWOOD J M, et al. The influence of part asymmetry on the achievable forming height in multi-pass spinning[J]. Journal of Materials Processing Technology, 2020, 275: 116350. [97] ÖZER A, ARAI H. Robotic metal spinning-experimental implementation using an industrial robot arm[C]//2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009. Kobe, Japan. Piscataway: IEEE, 2009: 140-145. [98] ÖZER A, SEKIGUCHI A, ARAI H. Experimental implementation and analysis of robotic metal spinning with enhanced trajectory tracking algorithms[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(4): 539-550. [99] ARAI H. Robotic metal spinning-numerical investigations for vibration suppression and experimental implementation using an industrial robot[J]. IFAC Proceedings Volumes, 2009, 42(16): 227-232. |
[1] | 马艺星, 杨蔚涛, 关肖虎, 杨旗, 赵同新. TWIP钢/IF钢热轧复合板材的微观结构和界面结合性能[J]. 机械工程学报, 2024, 60(4): 345-356. |
[2] | 姚丹, 张捷, 王瑞乾, 肖新标. 阻尼处理对铝型材结构隔声特性的影响分析[J]. 机械工程学报, 2024, 60(18): 299-309. |
[3] | 邓铁松, 肖新标, 圣小珍. 基于2.5维有限元-边界元的高速列车车体铝型材声振特性研究[J]. 机械工程学报, 2022, 58(1): 97-107. |
[4] | 崔晓磊. 管材流体高压成形起皱行为与皱纹控制研究进展[J]. 机械工程学报, 2021, 57(12): 226-236. |
[5] | 郭鹏, 张新艳, 余建波. 基于深度强化学习与有限元仿真集成的拉深成形控制[J]. 机械工程学报, 2020, 56(20): 47-58. |
[6] | 刘泾源, 崔晓磊. 铀及铀合金材料塑性变形机理及轧制技术研究进展[J]. 机械工程学报, 2020, 56(18): 22-34,42. |
[7] | 于高潮, 赵军. 金属板材循环拉压加载中力学行为的演化[J]. 机械工程学报, 2019, 55(4): 33-41. |
[8] | 梁宾, 赵岩, 赵清江, 范体强, 李阳. 基于Gissmo失效模型的6016铝合金板材断裂行为研究及应用[J]. 机械工程学报, 2019, 55(18): 53-62. |
[9] | 杨卓云, 赵长财, 董国疆, 陈光, 朱良金, 杜冰. 基于Lou-2013韧性断裂准则5182铝板成形极限研究[J]. 机械工程学报, 2019, 55(16): 47-57. |
[10] | 韩晓兰, 陈超, 刘辰, 赵升吨, 赵永强. 双层板材平底无铆塑性连接的抗拉强度预测模型[J]. 机械工程学报, 2018, 54(24): 61-68. |
[11] | 张子骞, 颜云辉. 薄壁管材纯弯曲后截面残留扁化变形预测[J]. 机械工程学报, 2018, 54(16): 108-117. |
[12] | 陈超, 赵升吨, 崔敏超, 韩晓兰, 赵旭哲, 范淑琴. 汽车铝合金板材平压整形无铆连接技术的研究[J]. 机械工程学报, 2017, 53(18): 42-48. |
[13] | 双远华, 王付杰, 王清华. 无缝钢管连续斜轧工艺与设备的探索[J]. 机械工程学报, 2017, 53(10): 18-24. |
[14] | 陈一哲, 刘伟, 苑世剑. 薄板液压成形起皱预测及控制研究进展[J]. 机械工程学报, 2016, 52(4): 20-28. |
[15] | 苑世剑, 刘伟, 徐永超. 板材液压成形技术与装备新进展[J]. 机械工程学报, 2015, 51(8): 20-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||