[1] SUN Y, ROGERS J A. Inorganic semiconductors for flexible electronics[J]. Advanced Materials, 2007, 19(15):1897-1916. [2] 刘长利, 沈雪石, 张学骜, 等. 纳米电子技术的发展与展望[J]. 微纳电子技术, 2011, 48(10):617-622. LIU Changli, SHEN Xueshi, ZHANG Xueao, et al. Development and prospect of nanoelectronic technology[J]. Nanoelectronic Technology, 2011, 48(10):617-622. [3] HUANG Y S, LIU Y, ZHAO Y, et al. Flexible electronics:Stretchable electrodes and their future[J]. Advanced Function Materials, 2019, 29(6):1805924. [4] RAY T R, CHOI J G, BANDODKAR A J, et al. Bio-integrated wearable systems:A comprehensive review[J]. Chemical Reviews, 2019, 119(8):5461-5533. [5] HUANG X, ZENG Z Y, Fan Z X, et al. Graphene-based electrodes[J]. Advanced Materials, 2012, 24(45):1897-1916. [6] ZHAO Y, HAN Q, CHENG Z H, et al. Integrated graphene systems by laser irradiation for advanced devices[J]. Nano Today, 2017, 12:14-30. [7] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon:A review of graphene[J]. Chemical Reviews, 2010, 110(1):132-145. [8] LEWIS J A, GRATSON G M. Direct writing in three dimensions[J]. Mater. Today, 2004, 7(7):32-39. [9] WAN Z F, STREED E W, LOBINO M, et al. Laser-reduced graphene:Synthesis, properties, and applications[J]. Advanced Materials Technologies, 2018, 3(4):1700315. [10] YE R, JAMES D K, TOUR J M. Laser-induced graphene:From discovery to translation[J]. Advanced Materials, 2019, 31(1):1803621. [11] YOU R, LIU Y Q, HAO Y L, et al. Laser fabrication of graphene-based flexible electronics[J]. Advanced Materials, 2019, 32(15):1901981. [12] DEL B E, SANCHEZ S C. Light to shape the future:From photolithography to 4D printing[J]. Advanced Optical Materials, 2019, 32(16):1900598. [13] OEHRLEIN G S, HAMAGUCHI S. Foundations of low-temperature plasma enhanced materials synthesis and etching[J]. Plasma Sources Science and Technology, 2018, 27(2):023001. [14] DENG B, LIU Z F, PENG H L. Toward mass production of CVD graphene films[J]. Advanced Materials, 2019, 31(9):1800996. [15] BEITOLLAHI, H MOHAMMADI S Z, SAFAE M, et al. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes:A review[J]. Analytical Methods, 2020, 12(12):1547-1560. [16] LI Q Y, LUO S J, WANG Y, et al. Carbon based polyimide nanocomposites thin film strain sensors fabricated by ink-jet printing method[J]. Sensors and actuators a-physical, 2019, 300:111664. [17] KURRA N, JIANG Q, Nayak P, et al. Laser-derived graphene:A three-dimensional printed graphene electrode and its emerging applications[J]. Nano today, 2019, 24(1):81-102. [18] JOE D J, KIM S J, PARK J H, et al. Laser-Material Interactions for Flexible Applications[J]. Advanced Materials, 2017, 29(26):1606586. [19] YE R, JAMES D K, TOUR J M. Laser-Induced Graphene[J]. Accounts of Chemical Research, 2018, 51(7):1609-1620. [20] PEI S F, CHENG H M, The reduction of graphene oxide[J]. Carbon 2012, 50(9):3210. [21] SMIRNOV V A, ARBUZOV A A, SHULGA Y M, et al. Photoreduction of graphite oxide[J]. High Energy Chemistry Volume, 2011, 45(11):57-61. [22] ZHANG Y L, GUO L, WEI S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1):15-20. [23] CHENG H, YE M, ZHAO F, et al. A general and extremely simple remote approach toward graphene bulks with in stimuli functionalization[J]. Advanced Materials, 2016, 28(17):3305-3312. [24] GUO L, ZHANG Y L, HAN D D, et al. Laser-mediated programmable N-doping and simultaneous reduction of graphene oxides[J]. Advanced Optical Materials, 2013, 2(2):120. [25] ABDELSAYED V, MOUSSA S, HASSAN H M, et al. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature[J]. The Journal of Physical Chemistry Letters, 2010, 1(19):2804-2809. [26] HUANG L, LIU Y, JI L C, et al. Pulsed laser assisted reduction of graphene oxide[J]. Carbon, 2011, 49(7):2431. [27] SRINIVASAN R, HALL R R, WILSON W D, et al. Formation of a porous, patternable, electrically conducting carbon network by the ultraviolet laser irradiation of the polyimide PDMDA-ODA (Kapton)[J]. Chemistry of Materials, 1994, 6(7):888-889. [28] LIN J, PENG Z, LIU Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5:5714. [29] ZHANG Z C, SONG M M, HAO J X, et al. Visible light laser-induced graphene from phenolic resin:A new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon, 2018, 127:278-296. [30] LI Y L, LUONG X X, ZHANG J B, et al. Laser-induced graphene in controlled atmospheres:From superhydrophilic to superhydrophobic surfaces[J]. Advanced Function Materials, 2017, 29(27):1700496. [31] LUONG D X, SUBRAMANIAN A K, SILVA G A L, et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams[J]. Advanced Materials, 2018, 30(28):1707416. [32] WANG Y N, WANG Y, ZHANG P P, et al. Laser-induced freestanding graphene papers:A new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures[J]. Small, 2018, 14(36):1802350. [33] YE R, CHYAN Y, ZHANG J, et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 2017, 29(37):1702211. [34] CHYAN Y, YE R, LI Y, et al. Laser-induced graphene by multiple lasing:Toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3):2176-2183. [35] LE T S D, PARK S, AN J N, et al. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics[J]. Advanced Function Materials, 2019, 29(33):1902771. [36] ZANG X N, JIAN C, INGERSOLL S, et al. Laser-engineered heavy hydrocarbons:Old materials with new opportunities[J]. Science Advances, 2020, 6:5231. [37] LAMBERTI A, CLERICI F, FONTANA M, et al. Highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate[J]. Advanced Energy Materials, 2016, 6(10):1600050. [38] SONG W, ZHU J, GAN B, S. et al. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene[J]. Small, 2018, 14(1):1702249. [39] WANG W T, LU L S, XIE Y X, et al, A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate[J]. Advanced Materials Technology, 2020, 5(2):1900903. [40] SUN B H, MCCAY R N, GOSWAMI S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges[J]. Advanced Materials, 2018, 30(50):1804327. [41] OH J S, KIM S H, HWANG T, et al. Laser-assisted simultaneous patterning and transferring of graphene[J]. The Journal of Physical Chemistry C, 2013, 117(1):663-668. [42] KIM K, PARK Y G, HYUN B G, et al. Recent advances in transparent electronics with stretchable forms[J]. Advanced Materials, 2018, 31(20):1804690. [43] QI D P, LIU Z Y, LIU Y, et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors[J]. Advanced Materials, 2015, 27(37):5559-5566. [44] GUO C F, LIU Q, WANG G, et al. Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes[J]. PNAS, 2015, 112(40):12332. [45] ZHANG Y H, YAN Z, NAN K, et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes[J]. PANS, 2015, 112(38):11757. [46] LING Y, ZHUANG X T, XU Z, et al. Mechanically assembled, three-dimensional hierarchical structures of cellular graphene with programmed geometries and outstanding electromechanical properties[J]. ACS Nano, 2018, 12(12):12456-12463. [47] PENG Z W, LI J, YE R, et al. Flexible and stackable laser-induced graphene supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3414-3419. [48] LI L, ZHANG J B, PENG Z W, et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene[J]. Advanced Materials, 2016, 28(5):838-845 [49] ZANG X N, JIAN C Y, ZHU T S, et al. Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications[J]. Nature Communication, 2019, 10:1-8. [50] GAO J, SHAO C X, SHAO S X, et al. Laser-assisted multiscale fabrication of configuration-editable supercapacitors with high energy density[J]. ACS Nano, 2019, 13(7):7463-7470. [51] TIAN H, SHU Y, CUI Y L, et al. Scalable fabrication of high-performance and flexible graphene strain sensors[J]. Nanoscale, 2014, 6(2):699. [52] LUO S, HOANG P T, LIU T, et al. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays[J]. Carbon, 2016, 96:522. [53] STANFORD M G, YANG K C, CHYAN Y, et al. Laser-induced graphene for flexible and embeddable gas sensors[J]. ACS Nano, 2019, 13(3):3474-3482. [54] TIAN H, SHU Y, WANG X F, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range[J]. Scientific Reports, 2015, 5:8603. [55] STANFORD M G, LI J T, CHYAN Y, et al. Laser-induced graphene triboelectric nanogenerators[J]. ACS Nano 2019, 13(6):7166-7174 [56] JIANG C M, Li X J, YAO Y, et al. A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode[J]. Nano Energy, 2019, 66:104121. [57] LING Y, PANG W B, LI X P, et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction[J]. Advanced Materials, 2020:1908475. [58] KIM J W, JEON J H, KIM H J, et al. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes[J]. ACS Nano, 2014, 8(3):2986-2997 [59] ZHU L, GAO Y Y, HAN B, et al. Laser fabrication of graphene-based electrothermal actuators enabling predicable deformation[J]. Optics Letters, 2019, 44(6):1363-1366 |