[1] 李永兵,马运五,楼铭,等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报,2016,52(24):1-23. LI Yongbing,MA Yunwu,LOU Ming,et al. Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering,2016,52(24):1-23. [2] 徐荣正,刘春忠,倪丁瑞,等. 锌夹层添加对镁-铝异种金属搅拌摩擦点焊接头组织与性能的影响[J]. 机械工程学报,2017,53(4):18-25. XU Rongzheng,LIU Chunzhong,NI Dingrui,et al. Influence of Zn interlayer addition on microstructure and mechanical properties of friction stir spot welded Mg-Al dissimilar joints[J]. Journal of Mechanical Engineering,2017,53(4):18-25. [3] SHEN Zhikang,DING Yuquan,GERLICH A. Advances in friction stir spot welding[J]. Critical Reviews in Solid State and Materials Sciences,2019,45(6):457-534. [4] 申志康,杨新岐,张照华,等. 铝合金回填式搅拌摩擦点焊组织及力学性能分析[J]. 焊接学报,2013,34(6):73-76. SHEN Zhikang,YANG Xinqi,ZHANG Zhaohua,et al. Analysis of microstructure and mechanical properties of refill friction stir spot welded aluminum alloy[J]. Transactions of the China Welding Institution,2013,34(6):73-76. [5] 姬书得,卓彬,马琳,等. 回填式搅拌摩擦点焊过程的材料流动规律模拟[J]. 焊接学报,2016,37(4):39-42. JI Shude,ZHUO Bin,MA Lin,et al. Simulation of material flow behavior during refill friction stir spot welding process[J]. Transactions of the China Welding Institution,2016,37(4):73-76. [6] 岳玉梅,李政玮,姬书得,等. 搅拌头形状对回填式搅拌摩擦点焊过程中材料流动行为的影响[J]. 中国有色金属学报,2015,25(9):2428-2434. YUE Yumei,LI Zhengwei,JI Shude,et al. Effect of tool geometry on material flow behavior during friction spot welding process[J]. The Chinese Journal of Nonferrous Metals,2015,25(9):2428-2434. [7] ZHAO H,SHEN Z,BOOTH M,et al. Calculation of welding tool pin width for friction stir welding of thin overlapping sheets[J]. The International Journal of Advanced Manufacturing Technology,2018,98(5-8):1721-1731. [8] BAKAVOS D,CHEN Y,BABOUT L,et al. Material interactions in a novel pinless tool approach to friction stir spot welding thin aluminum sheet[J]. Metallurgical and Materials Transactions A,2011,42(5):1266-1282. [9] GERLICH A,SU P,YAMAMOTO M,et al. Material flow and intermixing during dissimilar friction stir welding[J]. Science and Technology of Welding and Joining,2008,13(3):254-264. [10] SHEN J,LAGE S,SUHUDDIN U,et al. Texture development and material flow behavior during refill friction stir spot welding of AlMgSc[J]. Metallurgical and Materials Transactions A,2018,49(1):241-254. [11] AWS D. 17.2. Specification for resistance welding for aerospace applications[S]. American Welding Society,2019. [12] SHEN Z,DING Y,CHEN J,et al. Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds[J]. Journal of Materials Science & Technology,2019,35(6):1027-1038. [13] SU P,GERLICH A,NORTH T H,et al. Energy utilisation and generation during friction stir spot welding[J]. Science and Technology of Welding and Joining,2006,11(2):163-169. [14] LATHABAI S,PAINTER M J,CANTIN G M D,et al. Friction spot joining of an extruded Al-Mg-Si alloy[J]. Scripta Materialia,2006,55(10):899-902. [15] GERLICH A,YAMAMOTO M,NORTH T H. Local melting and tool slippage during friction stir spot welding of Al-alloys[J]. Journal of Materials Science,2008,43(1):2-11. [16] GERLICH A,AVRAMOVIC-CINGARA G,NORTH T H. Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding[J]. Metallurgical and Materials Transactions A,2006,37(9):2773-2786. [17] ROSAKIS P,ROSAKIS A J,RAVICHANDRAN G,et al. A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals[J]. Journal of the Mechanics and Physics of Solids,2000,48(3):581-607. [18] SHEN Zhikang,YANG Xinqi,ZHANG Zhaohua,et al. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints[J]. Materials & Design,2013,44:476-486. |