[1] 智淑亚,吴洪兵. 数控进给伺服系统摩擦补偿控制仿真[J]. 沈阳工业大学学报,2019,41(4):361-365. ZHI Shuya,WU Hongbing. Simulation of friction compensation control for CNC feed servo system[J]. Journal of Shenyang University of Technology,2019,41(4):361-365. [2] 陈永波,燕延,王伟明,等. 磁悬浮直线电机三维有限元分析及优化设计研究[J]. 组合机床与自动化加工技术,2017(1):31-34. CHEN Yongbo,YAN Yan,WANG Weiming,et al. Three-dimensional finite element analysis and optimization design of magnetic levitation linear motor[J]. Combined Machine Tool and Automatic Processing Technology,2017(1):31-34. [3] GAO Hui,SONG Yongduan,WEN Changyun. Backstepping design of adaptive neural fault-tolerant control for MIMO nonlinear systems[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,28(11):2605-2613. [4] 张营,巩永光,郭亚军. 自适应模糊反演控制在机床永磁同步电机位置控制中的应用[J]. 机床与液压,2020,48(5):119-123. ZhANG Ying,GONG Yongguang,GUO Yajun. Application of adaptive fuzzy inversion control in position control of machine tool permanent magnet synchronous motor[J]. Machine Tool and Hydraulics,2020,48(5):119-123. [5] 张永顺,郭建超,王新,等. 不确定环境球型腕自适应滑模扰动控制[J]. 机械工程学报,2015,51(19):21-27. ZhANG Yongshun,GUO Jianchao,WANG Xin,et al. Adaptive sliding mode disturbance control of spherical wrist in uncertain environment[J]. Journal of Mechanical Engineering,2015,51(19):21-27. [6] WEN G X,CHEN C L,LIU Y J,et al. Neural network based adaptive leader following consensus control for second order non-linear multi-agent systems[J]. Control Theory & Applications IET,2015,9(13):1927-1934. [7] SAHOO A,XU H,JAGANNATHAN S. Neural network-based event-triggered state feedback control of nonlinear continuous-time systems[J]. IEEE Transactions on Neural Networks & Learning Systems,2016,27(3):497-509. [8] WANG D,LIU D,MU C,et al. Neural network learning and robust stabilization of nonlinear systems with dynamic uncertainties[J]. IEEE Transactions on Neural Networks & Learning Systems,2017,(99):1-10. [9] CHEN C. W,CHEN P C,CHANG W L. Modified intelligent genetic algorithm-based adaptive neural net-work control for uncertain structural systems[J]. Journal of Vibration and Control,2013,19(9):1333-1347. [10] SUN Y,XU J,QIANG H,et al. Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification[J]. IEEE Transactions on Industrial Electronics,2019,66(11):8589-8599. [11] 赵石铁,高宪文,车昌杰. 基于RBF神经网络的非线性磁悬浮系统控制[J]. 东北大学学报,2014,35(12):1673-1676,1696. ZHAO Shitie,GAO Xianwen,CHE Changjie. Control of nonlinear magnetic levitation system based on RBF neural network[J]. Journal of Northeastern University,2014,35(12):1673-1676,1696. [12] 卢晓慧,梁加红. 直驱型机电作动器中永磁容错电机非线性模型研究[J]. 中国电机工程学报,2012,32(18):145-151,189. LU Xiaohui,LIANG Jiahong. Research on nonlinear model of permanent magnet fault tolerant motor in direct drive electromechanical actuator[J]. Chinese Journal of Electrical Engineering,2012,32(18):145-151,189. [13] 严欣平. 无轴承永磁同步电机电磁设计与控制策略研究[D]. 重庆:重庆大学,2008. YAN Xinping. Research on electromagnetic design and control strategy of bearingless permanent magnet synchronous motor[D]. Chongqing:Chongqing University,2008. [14] 吴宝强,孙炜,曹成. 柔性和摩擦力不确定条件下RBF神经网络自适应轨迹跟踪方法[J]. 机械工程学报,2012,48(19):23-28. WU Baoqiang,SUN Wei,CAO Cheng. Adaptive trajectory tracking method of RBF neural network under uncertain conditions of flexibility and friction[J]. Journal of Mechanical Engineering,2012,48(19):23-28. [15] 高贯斌,王文,林铿,等. 基于RBF神经网络的关节转角误差补偿[J]. 机械工程学报,2010,46(12):20-24. GAO Guanbin,WANG Wen,LIN Keng,et al. Joint angle error compensation based on RBF neural network[J]. Journal of Mechanical Engineering,2010,46(12):20-24. [16] 张志勰,虞旦. BP和RBF神经网络在函数逼近上的对比与研究[J]. 工业控制计算机,2018,31(5):119-120. ZHANG Zhixie,YU Dan. Comparison and research on function approximation of BP and RBF neural networks[J]. Industrial Control Computer,2018,31(5):119-120. [17] 蓝益鹏,李洁. 直线同步电动机磁悬浮系统的自适应模糊滑模控制[J/OL]. 控制与决策,2021(3):184-189. LAN Yipeng,LI Jie. Adaptive fuzzy sliding mode control of linear synchronous motor magnetic suspension system[J/OL]. Control and Decision,2021(3):184-189. |