[1] ANDO N, KANZAKI R. Insect-machine hybrid robot:Closing loops with mobile robots[J]. Current Opinion in Insect Science, 2020, 42:61-69. [2] KUROTSUCHI K, TAI M, TAKAHASHI H. Vision-based autonomous micro-air-vehicle control for odor source localization[C]//Proceedings of 2016 23rd International Conference on Mechatronics and Machine Vision In Practice (M2VIP). Nanjing:IEEE, 2016:89-94. [3] 宗光华, 贾明, 毕树生, 等. 扑翼式微型飞行器的升力测量与分析[J]. 机械工程学报, 2005, 41(8):120-124.ZONG Guanghua, JIA Ming, BI Shusheng, et al. Measurement and analysis of lift of micro air robot with flapping wings[J]. Journal of Mechanical Engineering, 2005, 41(8):120-124. [4] Bi S, Cai Y. Effect of spanwise flexibility on propulsion performance of a flapping hydrofoil at low Reynolds number[J]. Chinese Journal of Mechanical Engineering, 2012, 25(1):12-19. [5] Xin Z, Fang Y. Control system design for an unmanned helicopter to track a ground target[J]. Chinese Journal of Mechanical Engineering, 2011, 24(3):420-427. [6] 郑能干, 陈卫东, 胡福良, 等. 昆虫机器混合系统研究进展[J]. 中国科学:生命科学, 2011, 41(4):259-272.ZHENG Nenggan, CHEN Weidong, HU Fuliang, et al. Research progress and challenges on cyborg insect[J]. SCIENTIA SINICA Vitae, 2011, 41(4):259-272. [7] 王国彪, 陈殿生, 陈科位, 等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报, 2015, 51(13):27-44.WANG Guobiao, CHEN Diansheng, CHEN Kewei, et al. The current research status and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering, 2015, 51(13):27-44. [8] BOZKURT A, LOBATON E, SICHITIU M, et al. Biobotic insect swarm based sensor networks for search and rescue[C]//Proceedings of Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII. Baltimore, MA:SPIE, 2014, 9091:90911L. [9] DODD A. The trouble with insect cyborgs[J]. Society Animals, 2014, 22(2):153-173. [10] KUTSCH W, SCHWARZ G, FISCHER H, et al. Wireless transmission of muscle potentials during free flight of a locust[J]. Journal of Experimental Biology, 1993, 185(1):367-373. [11] KUTSCH W, BERGER S, KAUTZ H. Turning manoeuvres in free-flying locusts:Two-channel radio telemetric transmission of muscle activity[J]. Journal of Experimental Zoology, 2003, 299A (2):139-150. [12] HOLZER R, SHIMOYAMA I. Locomotion control of a bio-robotic system via electric stimulation[C]//Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS'97. Grenoble, France:IEEE, 1997:1514-1519. [13] LATIF T, BOZKURT A. Line following terrestrial insect biobots[C]//34th Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS). San Diego, CA:IEEE, 2012:972-975. [14] 尧俊瑜, 邬长杰. 脑机接口技术研究综述[J]. 现代计算机(专业版), 2017(27):80-84.YAO Junyu, WU Changjie. Review of brain-computer interface technology research[J]. Modern Computer, 2017(27):80-84. [15] LI G, ZHANG D. Brain-computer interface controlled cyborg:establishing a functional information transfer pathway from human brain to cockroach brain[J]. Plos One, 2016, 11(3):e0150667. [16] BOZKURT A, PAUL A, PULLA S, et al. Microprobe microsystem platform inserted during early metamorphosis to actuate insect flight muscle[C]//2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). Hyogo, Japan:IEEE, 2007:405-408. [17] BOZKURT A, GILMOUR R F, SINHA A, et al. Insect-machine interface based neurocybernetics[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(6):1727-1733. [18] TSANG W M, STONE A L, OTTEN D, et al. Insect-machine interface:A carbon nanotube-enhanced flexible neural probe[J]. Journal of Neuroscience Methods, 2012, 204(2):355-365. [19] SATO H, BERRY C W, CASEY B E, et al. A cyborg beetle:Insect flight control through an implantable, tetherless microsystem[C]//21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2008). Tucson, AZ:IEEE, 2008:164-167. [20] SATO H, BERRY C W, MAHARBIZ M M. Flight control of 10 gram insects by implanted neural stimulators[C]//2008 Solid-State Sensors, Actuators, and Microsystems Workshop. Hilton Head Island, South Carolina, 2008:90-91. [21] SATO H, DOAN T T V, KOLEV S, et al. Deciphering the role of a coleopteran steering muscle via free flight stimulation[J]. Current Biology, 2015, 25(6):798-803. [21] CAO F, ZHANG C, CHOO H Y, et al. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait[J]. Journal of The Royal Society Interface, 2016, 13(116):20160060. [23] ZHENG N, MA Q, JIN M, et al. Abdominal-waving control of tethered bumblebees based on sarsa with transformed reward[J]. IEEE Transactions on Cybernetics, 2019, 49(8):3064-3073. [24] IBBOTSON M R, HUNG Y S, MEFFIN H, et al. Neural basis of forward flight control and landing in honeybees[J]. Scientific Reports, 2017, 7(1):14591. [25] HOWARD S R, AVARGUES-WEBER A, GARCIA J E, et al. Numerical ordering of zero in honey bees[J]. Science, 2018, 360(6393):1124-1126. [26] ZELLER M, HELD M, BENDER J, et al. Transmedulla neurons in the sky compass network of the honeybee (Apis mellifera) are a possible site of circadian input[J]. PLoS One, 2015, 10(12):e0143244. [27] BAO L, ZHENG N, ZHAO H, et al. Flight control of tethered honeybees using neural electrical stimulation[C]//2011 5th International IEEE/EMBS Conference on Neural Engineering (NER). Cancun, MEXICO:IEEE, 2011:558-561. [28] ZHAO H, ZHENG N, RIBI W A, et al. Neuromechanism study of insect-machine interface:Flight control by neural electrical stimulation[J]. Plos One, 2014, 9(11):e113012. [29] 薛磊. 前视结节电刺激对熊蜂飞行控制的研究[D]. 杭州:浙江大学, 2015.XUE Lei. Flight behavior control of bumblebees by electrical stimulation on anterior optic tubercles[D]. Hangzhou:Zhejiang University, 2015. [30] ZHAO J, LI Z, ZHAO Z, et al. Electroantennogram reveals a strong correlation between the passion of honeybee and the properties of the volatile[J]. Brain and Behavior, 2020, 10(6):e01603. |