• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (13): 214-224.doi: 10.3901/JME.2021.13.214

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

基于多通道融合及贝叶斯理论的刀具剩余寿命预测方法

王艺玮, 邓蕾, 郑联语, 王亚辉   

  1. 北京航空航天大学机械工程及自动化学院 北京 100191
  • 收稿日期:2020-07-15 修回日期:2020-12-10 出版日期:2021-07-05 发布日期:2021-08-31
  • 通讯作者: 郑联语(通信作者),男,1967年出生,博士,教授,博士研究生导师。主要研究方向为数字化与智能制造技术、柔性智能工艺装备、先进测量与质量控制、可穿戴和AR辅助智能装配技术、闭环自适应智能加工。E-mail:lyzheng@buaa.edu.cn
  • 作者简介:王艺玮,女,1988年出生,博士,讲师,博士研究生导师。主要研究方向为工业智能,复杂装备智能运维系统,设备故障诊断,剩余寿命预测及健康管理。E-mail:wangyiwei@buaa.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51805262)

A Multi-channel Signal Fusion and Bayesian Theory Based Method for Tool Remaining Useful Life Prediction

WANG Yiwei, DENG Lei, ZHENG Lianyu, WANG Yahui   

  1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191
  • Received:2020-07-15 Revised:2020-12-10 Online:2021-07-05 Published:2021-08-31

摘要: 刀具监测及可用剩余寿命(RUL)预测对降本增效及保证加工质量意义重大。针对单一传感器预测精度波动大、数据利用率低、可靠性低等问题,提出一种多通道信号融合及贝叶斯更新的刀具剩余寿命预测方法。通过计算多通道信号所提取特征的时间序列与对应时间矢量的斯皮尔曼等级相关系数对特征时序做单调性排序,取单调性得分高的特征用主成分分析进行融合并构建健康因子作为观测数据,基于贝叶斯理论及马尔科夫链蒙特卡洛采样估计退化模型参数,并随着时间推进及监测数据序贯可获,实时在线更新退化模型参数以逐渐逼近刀具磨损退化趋势,同时对每时刻剩余寿命进行迭代估计。所提方法可避免基于深度学习方法需要依赖大量全寿命数据离线训练预测模型且模型对新预测任务适应性有限的局限性。用PHM2010公开数据挑战赛中三槽球头硬质合金铣刀切削不锈钢过程磨损全寿命数据集验证了方法有效性。

关键词: 刀具RUL预测, 多通道信号融合, 贝叶斯理论, 马尔科夫链蒙特卡洛采样

Abstract: Tool monitoring and remaining useful life (RUL) prediction are significant for reducing costs and ensuring processing quality. Aiming at the problems of single-sensor prediction accuracy fluctuations, low data utilization, and low reliability, a multi-channel signal fusion and Bayesian update tool remaining life prediction method is proposed. By calculating the time series of the features extracted from the multi-channel signal and the Spearman rank correlation coefficient of the corresponding time vector, the feature time is monotonically ranked. Features with a high monotonicity score are fused using principal component analysis and the health factors are constructed as observation data based on Bayesian theory and Markov chain Monte Carlo sampling to estimate the degradation model parameters, and as time progresses and monitoring data is available sequentially, the degradation model parameters are updated online in real time to gradually approach the trend of tool wear degradation. The remaining life of each moment is estimated iteratively. The proposed method can avoid the limitation that deep learning-based methods need to rely on many full-life data to train the prediction model offline and the model has limited adaptability to new prediction tasks. Validate with the full life data set of the three-slot ball-end carbide milling cutter for cutting stainless steel in the open data challenge.

Key words: tool RUL prediction, multi-channel signal fusion, Bayesian theory, Markov chain Monte Carlo sampling

中图分类号: