[1] 赵帅, 黄亦翔, 王浩任, 等. 基于随机森林与主成分分析的刀具磨损评估[J]. 机械工程学报, 2017, 53(21):181-189.ZHAO Shuai, HUANG Yixiang, WANG Haoren, et al. Random forest and principal components analysis based on health assessment methodology for tool wear[J]. Journal of Mechanical Engineering, 2017, 53(21):181-189. [2] 雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16):1-6.LEI Yaguo, HAN Tianyu, WANG Biao, et al. XJTU-SY rolling element bearing accelerated life test datasets:A tutorial[J]. Journal of Mechanical Engineering, 2019, 55(16):1-6. [3] 张石平, 王智明, 杨建国. 机床刀具可靠性及寿命评估[J]. 计算机集成制造系统, 2015, 21(6):1579-1584.ZHANG Shiping, WANG Zhiming, YANG Jianguo. Tool reliability and life assessment for machine tools[J]. Computer Integrated Manufacturing Systems, 2015, 21(6):1579-1584. [4] 裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8):1-13.PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8):1-13. [5] LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural network[J]. Reliability Engineering and System Safety, 2018, 72:1-11. [6] LI X, ZHANG W, DING Q. Deep learning-based remaining useful life estimation of bearing using multi-scale feature extraction[J]. Reliability Engineering and System Safety. 2019, 182:208-218. [7] YU W N, KIM II Y, MECHEFSKE C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129:764-780. [8] WANG B, LEI Y G, LI N P et al. Deep separable convolutional network for remaining useful life prediction of machinery[J]. Mechanical Systems and Signal Processing, 2019, 134:1-18. [9] 蔡伟立, 胡小锋, 刘梦湘. 基于迁移学习的刀具剩余寿命预测方法研究[J/OL]. (2019-11-29). 计算机集成制造系统. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ20191129007&v=HEpgAltAcr%25mmd2BdFXfCzJRiSCWfv2E7Lk5S06E%25mmd2FgjQF69oSffJNeq0ApFE2wAM1gR3L. CAI Weili, HU Xiaofeng, LIU Mengxiang. Research on prediction method of tool remaining useful life based on transfer learning[J]. (2019-11-29). Computer Integrated Manufacturing Systems. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ20191129007&v=HEpgAltAcr%25mmd2BdFXfCzJRiSCWfv2E7Lk5S06E%25mmd2FgjQF69oSffJNeq0ApFE2wAM1gR3L. [10] WANG Y W, GOGU C, KIM N H, et al. Noise-dependent ranking of prognostics algorithms based on discrepancy without true damage information[J]. Reliability Engineering and System Safety, 2019, 184:86-100. [11] HU Y, BARALDI P, ZIO E. A particle filtering and kernel smoothing-based approach for new design component prognostics[J]. Reliability Engineering and System Safety, 2015, 134:19-31. [12] WANG Y W, GOGU C, BINAUD N, et al. A model-based prognostics method for fatigue crack growth in fuselage panels[J]. Chinese Journal of Aeronautics, 2019, 32(2):396-408. [13] 王国峰, 董毅, 杨凯, 等. 基于深度学习与粒子滤波的刀具寿命预测[J]. 天津大学学报, 2019, 152(11):1109-1116.WANG Guofeng, DONG Yi, YANG Kai, et al. Tool life prediction based on deep learning and particle filtering[J]. Journal of Tianjin University, 2019, 152(11):1109-1116. [14] 任子强, 司小胜, 胡昌华, 等. 融合多传感器数据的动机剩余寿命预测方法[J]. 航空学报, 2019, 40(12):1-12.REN Ziqiang, SI Xiaosheng, HU Changhua, et al. Remaining useful life prediction method for engine combining multi-sensors data[J]. Chinese Journal of Aeronautics, 2019, 40(12):1-12. [15] Bayesian-MCMC-Prognostics[EB/OL].(2021-01-13). https://github.com/Andy-design-code/Bayesian-MCMC-Prognostics [16] 胡昌华, 施权, 司小胜, 等. 数据驱动的寿命预测和健康管理技术研究进展[J]. 信息与控制, 2017, 46(1):72-82.HU Changhua, SHI Quan, SI Xiaosheng, et al. Data-driven life prediction and health management:state of the art[J]. Information and Control. 2017, 46(1):72-82. [17] 赵申坤, 姜潮, 龙湘云. 一种基于数据驱动的贝叶斯理论的机械系统寿命寿命预测方法[J]. 机械工程学报, 2018, 54(12):115-124.ZHAO Shenkun, JIANG Chao, LONG Xiangyun. Remaining useful life estimation of mechanical systems based on the data-driven method and Bayesian theory[J]. Journal of Mechanical Engineering, 2018, 54(12):115-124. [18] MOSALLAM A, MEDJAHER K, ZERHOUNI N. Data driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing, 2016, 27(5):1037-1048. [19] JOLLIFFE I T. Principal component analysis[M]. New York:Springer Press, 2002. [20] FOSTER P. Exploring multivariate data using directions of high density[J]. Statistics and Computing, 1988, 8(4):347-355. [21] LI N P, LEI Y G, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12):7762-7773. [22] WANG Y H, DENG C, WU J, et al. Failure time prediction for mechanical device based on the degradation sequence[J]. Journal of Intelligent Manufacturing, 2015, 26:1181-1199. [23] 朱新建, 陈学东, 吕宝林, 等. 基于多维高斯贝叶斯的机械设备失效/故障智能诊断及参数影响分析[J]. 机械工程学报, 2020, 56(4):35-41.ZHU Xinjian, CHEN Xuedong, LÜ Baolin, et al. Smart failure/fault diagnosis and influence analysis for mechanical equipment with multivariate Gaussian Bayesian method[J]. Journal of Mechanical Engineering. 2020, 56(4):35-41. [24] KIM N H, AN D, CHOI J H. Prognostics and health management of engineering systems[M]. New York:Springer Press, 2017. [25] PHM2010 conference data challenge[EB/OL]. (2010-05-18). http://www.phmsociety.org/competition/phm/10. [26] LI X, LIM B S, ZHOU J H, et al. Fuzzy neural network modelling for tool wear estimation in dry milling operation[C]//Annual Conference of the prognostics and health management society, 2009. [27] BENKEDJOUH T, MEDJAHER K, ZERHOUNI N, et al. Health assessment and life prediction of cutting tools based on support vector regression[J]. Journal of Intelligent manufacturing, 201526, 213-223. [28] WU D, JENNINGS C, TERPENNY J, et al. Cloud-based parallel machine learning for tool wear prediction[J]. Journal of manufacturing science and engineering, 2018, 140(4):041005. [29] SAXENA A, CELAYA J, SAHA B, et al. On applying the prognostic performance metrics[C]//Annual conference of the prognostic and health management society, 27 September-1 October 2009, San Diego, California, USA. |