机械工程学报 ›› 2021, Vol. 57 ›› Issue (10): 196-219.doi: 10.3901/JME.2021.10.196
刘献礼1, 李雪冰1, 丁明娜1, 岳彩旭1, 王力翚2, 梁月昇3, 张博闻1
收稿日期:
2020-06-17
修回日期:
2021-01-27
出版日期:
2021-05-20
发布日期:
2021-07-23
作者简介:
刘献礼,男,1961年出生,教授,博士研究生导师。主要研究方向为金属切削理论及刀具技术、数字化加工及智能制造技术。E-mail:Xianli.liu@hrbust.edu.cn;李雪冰,男,1989年出生,博士,讲师。主要研究方向为刀具全生命周期管控及智能制造技术。E-mail:lixuebing@hrbust.edu.cn
基金资助:
LIU Xianli1, LI Xuebing1, DING Mingna1, YUE Caixu1, WANG Lihui2, LIANG Yuesheng3, ZHANG Bowen1
Received:
2020-06-17
Revised:
2021-01-27
Online:
2021-05-20
Published:
2021-07-23
摘要: 智能制造是未来制造业的主攻方向,以航空航天、汽车领域为代表的高端制造装备关乎国防安全和国家经济命脉。复杂多样化的零部件加工对刀具管控提出了更高的要求。刀具作为切削过程中最活跃、状态变化最多的要素,其性能直接影响加工精度和生产效率。大数据时代的到来引领刀具管理模式的变革,制造商、供应商、应用企业对刀具全生命周期数据的需求与日俱增。通过分析刀具管控现状可知,设计制造精准性、寿命预测准确性、刀具管控科学性是亟待解决的核心问题。提出刀具全生命周期智能管控的内涵及关键技术,综述国内外学者在刀具设计制造智能优化、刀具切削过程状态监测和刀具多源数据管理共享方面的研究成果,最后结合刀具管控技术的应用情况对未来的研究方向进行展望。随着智能制造的不断深入,以人工智能、大数据、数字孪生、云计算等现代信息技术为依托的刀具全生命周期智能管控技术,必将推动刀具产业链转型升级。
中图分类号:
刘献礼, 李雪冰, 丁明娜, 岳彩旭, 王力翚, 梁月昇, 张博闻. 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报, 2021, 57(10): 196-219.
LIU Xianli, LI Xuebing, DING Mingna, YUE Caixu, WANG Lihui, LIANG Yuesheng, ZHANG Bowen. Intelligent Management and Control Technology of Cutting Tool Life-cycle for Intelligent Manufacturing[J]. Journal of Mechanical Engineering, 2021, 57(10): 196-219.
[1] KANG H S,LEE J Y,CHOI S S,et al. Smart manufacturing:Pastresearch,present findings,and future directions[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2016,3(1):111-128. [2] 中华人民共和国国务院. 国务院关于印发《"十三五"国家科技创新规划》[EB/OL].[2016-08-08]. http://www.gov.cn. State Council of the People's Republic of China. The national science and technology innovation plan for the 13th five year plan of the state council[EB/OL].[2016-08-08]. http://www.gov.cn. [3] 刘强. 智能制造理论体系架构研究[J]. 中国机械工程,2020,31(1):24-36. LIU Qiang. Study on architecture of intelligent manufacturing theory[J]. China Mechanical Engineering,2020,31(1):24-36. [4] CORONADO P D U,LYNN R,LOUHICHI W,et al. Part data integration in the shop floor digital twin:Mobile and cloud technologies to enable a manufacturing execution system[J]. Journal of manufacturing systems,2018,48:25-33. [5] LIU Yongkui,WANG Lihui,WANG X V,et al. Scheduling in cloud manufacturing:State-of-the-art and research challenges[J]. International Journal of Production Research,2019,57(15-16):4854-4879. [6] LIU Xianli,FAN Mengchao,JI Wei,et al. Research on models of design and NC manufacturing for ellipsoid end mill[J]. International Journal of Advanced Manufacturing Technology,2015,85(9-12):2729-2744. [7] 岳彩旭,李录彬,计伟,等. 基于磨制精度的环形铣刀刃线几何模型[J]. 南京航空航天大学学报,2016,48(1):93-97. YUE Caixu,LI Lubin,JI Wei,et al. Cutting edge geometric model of ring milling tool based on grinding precision[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2016,48(1):93-97. [8] 陈涛,王道源,李素燕,等. 渐变倒棱PCBN刀具设计制造及磨削精度检测[J]. 机械工程学报,2018,54(11):214-221. CHEN Tao,WANG Daoyuan,LI Suyan,et al. Design,manufacture and grinding accuracy detection of PCBN tools with variable chamfer edge[J]. Journal of Mechanical Engineering,2018,54(11):214-221. [9] 苏翔. 复杂型线铣刀数字化设计及铣削力预测研究[D]. 济南:山东大学,2016. SU Xiang. Research on digital design and force prediction for complex profile milling cutter[D]. Jinan:Shandong University,2016. [10] ABELE E,FUJARA M. Simulation-based twist drill design and geometry optimization[J]. Cirp Annals Manufacturing Technology,2010,59(1):145-150. [11] LI Anhai,ZHAO Jun,PEI Zhiqiang,et al. Simulation-based solid carbide end mill design and geometry optimization[J]. The International Journal of Advanced Manufacturing Technology,2014,71(9-12):1889-1900. [12] KUMAR V,EAKAMBARAM A,ARIVAZHAGAN A. FEM analysis to optimally design end mill cutters for milling of Ti-6Al-4V[J]. Procedia Engineering,2014(97):1237-1246. [13] WANG Yang,SU Honghua,DAI Jianbo,et al. A novel finite element method for the wear analysis of cemented carbide tool during high speed cutting Ti6Al4V process[J]. International Journal of Advanced Manufacturing Technology,2019,103(2):2795-2807. [14] DAI Xing,ZHUANG Kejia,Ding Han. A systemic investigation of tool edge geometries and cutting parameters on cutting forces in turning of Inconel 718[J]. International Journal of Advanced Manufacturing Technology,2019,105(1-4):531-543. [15] ZHAO Zemin,LIU Xianli,YUE Caixu,et al. Time-varying analytical model of ball-end milling tool wear in surface milling[J]. International Journal of Advanced Manufacturing Technology,2020,108(3):1109-1123. [16] 刘献礼,计伟,范梦超,等. 基于特征的刀具"形-性-用"一体化设计方法[J]. 机械工程学报,2016,52(11):146-153. LIU Xianli,JI Wei,FAN Mengchao,et al. Feature based cutting tool "shape-performance-application" integrating design approach[J]. Journal of Mechanical Engineering,2016,52(11):146-153. [17] JI Wei,ZHAO Zemin,LIU Xianli. A GA-based optimization algorithm for cutting tool "shape-performance-application" integrated design approach[J]. Procedia Cirp,2016,56:90-94. [18] CHENG Kai,NIU Zhichao,WANG R C,et al. Smart cutting tools and smart machining:Development approaches,and their implementation and application perspectives[J]. Chinese Journal of Mechanical Engineering,2017,5(30):1162-1176. [19] SHU Shengrong,DING Hui,et al. Thermal design and analysis of an internally cooled smart cutting tool and its implementation perspectives[J]. Materials Science Forum, 2014,770:120-125. [20] WANG Chao,CHENG Kai,CHEN Xun,et al. Design of an instrumented smart cutting tool and its implementation and application perspectives[J]. Smart Materials and Structures,2014,23(3):035019. [21] XIAO Caiwei,DING Hui,CHENG Kai,et al. Design of an innovative smart turning tool with application to real-time cutting force measurement[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2014,229(3):563-568. [22] GRIEVES M. Digital twin:Manufacturing excellent through virtual factory replication[J]. Digital Twin White Paper,2014,5:1-7. [23] 陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算集成制造系统,2018,24(1):1-18. TAO Fei,LIU Weiran,LIU Jianhua,et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems,2018,24(1):1-18. [24] TAO Fei,ZHANG He,LIU Ang,et al. Digital twin in industry:State-of-the-Art[J]. IEEE Transactions on Industrial Informatics,2019,15(4):2405-2415. [25] 易扬,刘晓军,冯锦丹,等. 面向数字孪生的产品表面模型表达与生成方法[J]. 计算集成制造系统,2019,25(6):1454-1462. YI Yang,LIU Xiaojun,FENG Jindan,et al. Representation and generation method of digital twin-oriented product skin model[J]. Computer Integrated Manufacturing Systems,2019,25(6):1454-1462. [26] BOTKINA D,HEDLIND M,OLSSON B,et al. Digital twin of a cutting tool[J]. Procedia Cirp,2018,72:215-218. [27] TONG Xin,LIU Qiang,PI Shiwei,et al. Real-time machining data application and service based on IMT digital twin[J]. Journal of Intelligent Manufacturing,2019,2:1-20. [28] 孙惠斌,潘军林,张纪铎,等. 面向切削过程的刀具数字孪生模型[J]. 计算机集成制造系统,2019,25(6):1474-1480. SUN Huibin,PAN Junlin,ZHANG Jiduo,et al. Digital twin model for cutting tools in machining process[J]. Computer Integrated Manufacturing Systems,2019,25(6):1474-1480. [29] 朱宇,李海宁,曹志涛,等. 数字孪生在航空发动机制造工艺中的应用探索[J]. 航空动力,2019(4):16. ZHU Yu,LI Haining,CAO Zhitao,et al. The application of digital twin in manufacturing process of aero engine[J]. Aerospace Power,2019(4):16. [30] CAGGIANO A. Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition[J]. Sensors,2018,18(3):823. [31] LIU C,WANG G F,LI Z M. Incremental learning for online tool condition monitoring using Ellipsoid ARTMAP network model[J]. Applied Soft Computing,2015,35:186-198. [32] KOTHURU A,NOOKA S P,LIU R. Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling[J]. The International Journal of Advanced Manufacturing Technology,2018,95(9-12):3797-3808. [33] WU Jun,SU Yongheng,CHENG Yiwei,et al. Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system[J]. Applied Soft Computing,2018,68:13-23. [34] BENKEDJOUH T,ZERHOUNI N,RECHAK S. Tool wear condition monitoring based on continuous wavelet transform and blind source separation[J]. The International Journal of Advanced Manufacturing Technology,2018,97(9-12):3311-3323. [35] GHOSH N,RAVI Y B,PATRA A,et al. Estimation of tool wear during CNC milling using neural network-based sensor fusion[J]. Mechanical Systems and Signal Processing,2007,21(1):466-479. [36] DUTTA S,PAL S K,MUKHOPADHYAY S,et al. Application of digital image processing in tool condition monitoring:A review[J]. CIRP Journal of Manufacturing Science and Technology,2013,6(3):212-232. [37] MIKOŁAJCZYK T,NOWICKI K,KŁODOWSKI A,et al. Neural network approach for automatic image analysis of cutting edge wear[J]. Mechanical Systems and Signal Processing,2017,88:100-110. [38] ZHU Kunpeng,YU Xiaolong. The monitoring of micro milling tool wear conditions by wear area estimation[J]. Mechanical Systems and Signal Processing,2017,93:80-91. [39] DORIANA M D A,ULLAH A M M S,MATARAZZO D. Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing[J]. Journal of Intelligent Manufacturing,2017,28(6):1285-1301. [40] DUTTA S,PAL S K,SEN R. On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression[J]. Precision Engineering,2016,43:34-42. [41] BHAT N N,DUTTA S,VASHISTH T,et al. Tool condition monitoring by SVM classification of machined surface images in turning[J]. The International Journal of Advanced Manufacturing Technology,2016,83(9-12):1487-1502. [42] LI Lihong,AN Qingbin. An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis[J]. Measurement,2016,79:44-52. [43] ANTIĆ A,POPOVIĆ B,KRSTANOVIĆ L,et al. Novel texture-based descriptors for tool wear condition monitoring[J]. Mechanical Systems and Signal Processing,2018,98:1-15. [44] MART-ARELLANO G,TERRAZAS G,RATCHEV S. Tool wear classification using time series imaging and deep learning[J]. The International Journal of Advanced Manufacturing Technology,2019,104(9-12):3647-3662. [45] WANG Guofeng,YANG Yinwei,GUO Zhiwei. Hybrid learning based Gaussian ARTMAP network for tool condition monitoring using selected force harmonic features[J]. Sensors and Actuators A:Physical,2013,203:394-404. [46] WANG Guofeng,YANG Yinwei,ZHANG Y C,et al. Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection[J]. Sensors and Actuators A:Physical,2014,209:24-32. [47] WANG Guofeng,YANG Yinwei,LI Zhimeng. Force sensor based tool condition monitoring using a heterogeneous ensemble learning model[J]. Sensors,2014,14(11):21588-21602. [48] KANNATEY-ASIBU E,YUM J,KIM T H. Monitoring tool wear using classifier fusion[J]. Mechanical Systems and Signal Processing,2017,85:651-661. [49] LIU Changqing,LI Yingguang,HUA Jiaqi,et al. Real-time cutting tool state recognition approach based on machining features in NC machining process of complex structural parts[J]. The International Journal of Advanced Manufacturing Technology,2018,97(1-4):229-241. [50] ZHU Kunpeng,MEI Tao,YE Dongsen. Online Condition Monitoring in Micromilling:A force waveform shape analysis approach[J]. Industrial Electronics,IEEE Transactions on,2015,62(6):3806-3813. [51] RAMIREZ-NUNEZ J A,TREJO-HERNANDEZ M,ROMERO-TRONCOSO R J,et al. Smart-sensor for tool-breakage detection in milling process under dry and wet conditions based on infrared thermography[J]. The International Journal of Advanced Manufacturing Technology,2018,97(5-8):1753-1765. [52] RATAVA J,LOHTANDER M,VARIS J. Tool condition monitoring in interrupted cutting with acceleration sensors[J]. Robotics and Computer-Integrated Manufacturing,2017,47:70-75. [53] AKBARI A,DANESH M,KHALILI K. A method based on spindle motor current harmonic distortion measurements for tool wear monitoring[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2017,39(12):5049-5055. [54] HEINEMANN R,HINDUJA S. A new strategy for tool condition monitoring of small diameter twist drills in deep-hole drilling[J]. International Journal of Machine Tools and Manufacture,2012,52(1):69-76. [55] ZHU Kunpeng,ZHANG Yu. A generic tool wear model and its application to force modeling and wear monitoring in high speed milling[J]. Mechanical Systems and Signal Processing,2019,115:147-161. [56] KONG Dongdong,CHEN Yongjie,LI Ning. Gaussian process regression for tool wear prediction[J]. Mechanical Systems and Signal Processing,2018,104:556-574. [57] GERAMIFARD O,XU J X,ZHOU J H,et al. A physically segmented hidden markov model approach for continuous tool condition monitoring:Diagnostics and prognostics[J]. IEEE Transactions on Industrial Informatics,2012,8(4):964-973. [58] YU Jinsong,LIANG Shuang,TANG Diyin,et al. A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction[J]. The International Journal of Advanced Manufacturing Technology,2017,91(1-4):201-211. [59] ARAMESH M,SHABAN Y,YACOUT S,et al. Survival life analysis applied to tool life estimation with variable cutting conditions when machining titanium metal matrix composites (Ti-MMCs)[J]. Machining Science and Technology,2016,20(1):132-147. [60] YU Jianbo. Tool condition prognostics using logistic regression with penalization and manifold regularization[J]. Applied Soft Computing,2018,64:454-467. [61] JAVED K,GOURIVEAU R,LI Xiang,et al. Tool wear monitoring and prognostics challenges:A comparison of connectionist methods toward an adaptive ensemble model[J]. Journal of Intelligent Manufacturing,2018, 29(8):1873-1890. [62] 王强,李迎光,郝小忠,等. 基于在线学习的数控加工刀具寿命动态预测方法[J]. 航空制造技术,2019,62(7):49-53. WANG Qiang,LI Yingguang,HAO Xiaozhong,et al. Dynamic prediction method of cutting tool life in nc machining based on online learning[J]. Aeronautical Manufacturing Technology,2019,62(7):49-53. [63] 曹大理,孙惠斌,张纪铎,等. 基于卷积神经网络的刀具磨损在线监测[J]. 计算机集成制造系统,2020,26(1):74-80. CAO Dali,SUN Huibin,ZHANG Jiduo,et al. In-process tool condition monitoring based on convolution neutral network[J]. Computer Integrated Manufacturing Systems,2020,26(1):74-80. [64] SUN Huibin,CAO Dali,ZHAO Zidong,et al. A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process[J]. IEEE Transactions on Reliability,2018,67(3):1294-1303. [65] HANACHI H,YU Wennian,KIM I Y,et al. Hybrid data-driven physics-based model fusion framework for tool wear prediction[J]. The International Journal of Advanced Manufacturing Technology,2019,101(9-12):2861-2872. [66] LETOT C,SERRA R,DOSSEVI M,et al. Cutting tools reliability and residual life prediction from degradation indicators in turning process[J]. The International Journal of Advanced Manufacturing Technology,2016,86(1-4):495-506. [67] PEARN W L,HSU Y C. Optimal tool replacement for processes with low fraction defective[J]. European Journal of Operational Research,2007,180(3):1116-1129. [68] HSU B M,SHU M H. Reliability assessment and replacement for machine tools under wear deterioration[J]. The International Journal of Advanced Manufacturing Technology,2010,48(1-4):355-365. [69] DENG Y,ZHU H,ZHANG G,et al. Optimal tool replacement decision method based on cost and process capability[M]//ZHANG Tianbiao:Mechanical Engineering and Technology. Berlin:Springer,2012. [70] JAIN A K,LAD B K. A novel integrated tool condition monitoring system[J]. Journal of Intelligent Manufacturing,2019,30(3):1423-1436. [71] 曹乐,徐卫刚,黎厚松,等.一种面向自动生产线的刀具更换决策方法[J]. 机械工程学报,2014,50(9):131-135. CAO Le,XU Weigang,LI Housong,et al. Tool replacement decision-making method for automatic production line[J]. Journal of Mechanical Engineering,2014,50(9):131-135. [72] 徐卫刚. 变速箱齿轮自动生产线的刀具更换决策方法研究[D]. 重庆:重庆大学,2016. XU Weigang. Study on tool replacement decision methodfor gear automatic production line of gearbox[D]. Chongqing:Chongqing University,2016. [73] KUSIAK A. Smart manufacturing must embrace big data[J]. Nature,2017,544(7648):23-25. [74] 国际金属加工网. 瓦尔特:点击按钮即可找到刀具[EB/OL].[2018-12-19].https://www.mmsonline.com. MMSonline.com.cn. Walter:Click the button to find the tool[EB/OL].[2018-12-19]. https://www.mmsonline.com. [75] 王苏安. 面向全寿命周期管理的刀具直接标识与信息追踪技术研究[D]. 西安:西北工业大学,2007. WANG Suan. Research on tool direct marking and information tracking faced to life-cycle management[D]. Xi'an:Northwestern Polytechnical University,2007. [76] 解志锋,张维,雷蕾,等. 零件表面激光直接标刻二维条码的工艺参数优化研究[J]. 中国机械工程,2011,22(5):592-596. XIE Zhifeng,ZHANG Wei,LEI Lei,et al. Optimization of laser marking process parameters on 2D barcode in part surface[J]. China Mechanical Engineering,2011,22(5):592-596. [77] 房欣欣,李建美,路长厚,等. 金属表面Data Matrix条码高光区域的信息重构[J]. 计算机工程与应用,2016,52(16):205-209. FANG Xinxin,LI Jianmei,LU Changhou,et al. Highlight area reconstruction of Data Matrix barcodes marked onmetal surface[J]. Computer Engineering and Applications,2016,52(16):205-209. [78] LI Jinrui,WANG Aiqun,LI Jianmei,et al. An adaptive image binarization method for laser direct marking data matrix symbols on metal surface[J]. Applied Mechanics and Materials,2013,401:1319-1323. [79] LEI Lei,HE Weiping,ZHANG Wei. distortion correction of data matrix symbol directly marked on cylinder surface[C]//2010 International Conference on Artificial Intelligence and Computational Intelligence, 2010, October 23-24, Sanya, China. IEEE,2010,2:225-229. [80] 王佳婧. 复杂环境下刀具DPM码识别技术研究[D]. 西安:西北工业大学,2014. WANG Jiajing. Research on cutter DPM code recognition in complex environment[D]. Xi'an:Northwestern Polytechnical University,2014. [81] ZHANG Yingfeng,JIANG Pingyu,HUANG G,et al. RFID-enabled real-time manufacturing information tracking infrastructure for extended enterprises[J]. Journal of Intelligent Manufacturing,2012,23(6):2357-2366. [82] WANG Guoxin,NAKAJIMA H,YAN Yan,et al. A methodology of tool lifecycle management and control based on RFID[C]//2009 IEEE International Conference on Industrial Engineering and Engineering Management, 2009, December 8-11, Hong Kong, China. IEEE,2009:1920-1924. [83] 朱思征,王山山,敖丽娜,等. 大数据环境下刀具仓储与采购智能协同研究[J]. 软件,2016,37(2):29-32. ZHU Sizheng,WANG Shanshan,AO Lina,et al. Research on intelligent collaborative of tool storage and purchase in big data environment[J]. Computer Engineering and Software,2016,37(2):29-32. [84] 计红章. A数控车间刀具需求预测及库存管理研究[D]. 上海:上海交通大学,2017. JI Hongzhang. Study on tool safety stock management of a numerical control workshop[D]. Shanghai:Shanghai Jiao Tong University,2017. [85] 方超,周炳海. 机加工企业刀具库存分类方法研究[J]. 精密制造与自动化,2016(4):14-17. FANG Chao,ZHOU Binghai. Research on tool inventory classification in machining enterprises[J]. Precise Manufacturing and Automation,2016(4):14-17. [86] 舒海生. 柔性制造系统工件流和刀具流动态调度的研究[D]. 哈尔滨:哈尔滨工程大学,2005. SHU Haisheng. Research on dynamic scheduling of part flow and tool flow in FMS[D]. Harbin:Harbin Engineering University,2005. [87] 刘丰文. 刀具全生命周期信息管理技术研究[D]. 大连:大连理工大学,2015. LIU Fengwen. Research on information management technique in cutting tool life-cycle[D]. Dalian:Dalian University of Technology,2015. [88] 朱睿. 刀具智能管理及优化调度技术研究[D]. 重庆:重庆大学,2014. ZHU Rui. Research of tool intelligent management and optimum scheduling technology[D]. Chongqing:Chongqing University,2014. [89] 叶开. 基于MTO的刀具寿命预测与优化调度的智能管理系统及应用研究[D]. 合肥:合肥工业大学,2019. YE Kai. Research on intelligent management system and application of tool life prediction and optimal scheduling based on MTO[D]. Hefei:Hefei University of Technology,2019. [90] BRENNER D,KLEINERT F,IMIELA J,et al. Life cycle management of cutting tools:Comprehensive acquisition and aggregation of tool life data[J]. Procedia CIRP,2017,61(1):311-316. [91] WANG Rui,ZHAO Wu,LUO Cunjing,et al. An intelligent tool selection system based on CRB and RBR[J]. The Open Mechanical Engineering Journal,2014,8(1):795-802. [92] 刘会刚,王建军,姜建芳,等. 智能制造刀具管理系统数据库的设计与实现[J]. 工具技术,2018(6):29. LIU Huigang,WANG Jianjun,JIANG Jianfang,et al. Design and implementation of intelligent manufacturing tool management system database[J]. Tool Engineering,2018(6):29. [93] WANG Zhao,JIAO Li,YAN Pei,et al. Research and development of intelligent cutting database cloud platform system[J]. The International Journal of Advanced Manufacturing Technology,2018,94(9-12):3131-3143. [94] 李尧,刘强,张伟. 面向制造服务的数控切削数据库系统[J]. 计算机集成制造系统,2014,20(9):2221-2230. LI Yao,LIU Qiang,ZHANG Wei. CNC cutting database system for service-oriented manufacturing[J]. Computer Integrated Manufacturing Systems,2014,20(9):2221-2230. [95] 王建军,刘会刚. 智能制造刀具管理系统设计与实现[J]. 拖拉机与农用运输车,2019(1):15. WANG Jianjun,LIU Huigang. Design and implementation of intelligent manufacturing tool management system[J]. Tractor and Farm Transporter,2019(1):15. [96] 霍亭宇. 云制造环境下刀具资源优化配置与服务应用研究[D]. 哈尔滨:哈尔滨理工大学,2017. HUO Tingyu. Study on optimal allocation and service application of cutting tool resources under cloud manufacturing environment[D]. Harbin:Harbin University of Science and Technology,2017. [97] CORONADO P D U,LYNN R,LOUHICHI W,et al. Part data integration in the shop floor digital twin:Mobile and cloud technologies to enable a manufacturing execution system[J]. Journal of Manufacturing Systems,2018,48:25-33. |
[1] | 李佳男, 魏兆成, 冯景洋, 王学勤. 整体叶轮圆角立铣刀五轴U摆线剥铣轨迹规划[J]. 机械工程学报, 2024, 60(7): 212-223. |
[2] | 赵希坤, 李聪波, 杨勇, 吕岩, 姜书艳. 数据-机理混合驱动下考虑刀具柔性的柔性加工工艺参数能效优化方法[J]. 机械工程学报, 2024, 60(7): 236-248. |
[3] | 刘安南, 刘战强, 蔡士祥, 赵金富, 王兵. 切削加工车削刀具断屑装置及技术研究综述[J]. 机械工程学报, 2024, 60(7): 334-349. |
[4] | 张党, 赵永宣, 王振军, 张映锋. 数据-知识混合驱动的离散制造系统智能控制体系构架研究[J]. 机械工程学报, 2024, 60(6): 1-10,20. |
[5] | 狄子钧, 袁东风, 李东阳, 梁道君, 周晓天, 信苗苗, 曹凤, 雷腾飞. 基于多尺度-高效通道注意力网络的刀具故障诊断方法[J]. 机械工程学报, 2024, 60(6): 82-90. |
[6] | 王跃飞, 王超, 许于涛, 孙睿, 肖锴, 王凯林. 边-云协同下智能制造单元作业的数字孪生任务调度方法[J]. 机械工程学报, 2024, 60(6): 137-152. |
[7] | 冯景洋, 魏兆成, 王敏杰, 舒鑫, 张勇, 雍建华. 基于降维映射的五轴U摆线铣削刀轨生成研究[J]. 机械工程学报, 2024, 60(5): 362-377. |
[8] | 张军辉, 刘施镐, 徐兵, 黄伟迪, 吕飞, 黄晓琛. 轴向柱塞泵智能化关键技术研究进展及发展趋势[J]. 机械工程学报, 2024, 60(4): 32-49. |
[9] | 苏建涛, 董绍华, 朱诗敏. 多目标混合流水车间机器故障重调度问题研究[J]. 机械工程学报, 2024, 60(4): 438-448. |
[10] | 邓聪颖, 邓子豪, 林丽君, 陈翔, 马莹, 禄盛. 基于迁移学习的变刀具-刀柄夹持状态下数控铣削稳定性预测研究[J]. 机械工程学报, 2024, 60(3): 296-304. |
[11] | 杜宇超, 梁志强, 王飞, 李娟, 刘月红, 赵旭, 苏志朋, 马悦, 陈锐, 王西彬. PCD微细铣磨刀具切削力建模与加工性能研究[J]. 机械工程学报, 2024, 60(19): 298-309. |
[12] | 王耀南, 谢核, 邓晶丹, 毛建旭, 李文龙, 张辉. 智能制造测量机器人关键技术研究综述[J]. 机械工程学报, 2024, 60(16): 1-18. |
[13] | 石照耀, 俞志勇, 程慧明, 于渤, 左广祥. 精密减速器试验台的精度性能评价体系[J]. 机械工程学报, 2024, 60(16): 62-72. |
[14] | 王文波, 张映锋, 顾寄南, 张耿, 完严. 数据驱动的离散制造系统性能退化机理建模与预测控制方法研究[J]. 机械工程学报, 2024, 60(16): 400-411. |
[15] | 赖旭伟, 丁昆, 张楷, 黄锋飞, 郑庆, 李致萱, 丁国富. 基于可解释物理引导空间注意力改进的跨工艺参数立铣刀磨损辨识[J]. 机械工程学报, 2024, 60(12): 147-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||