[1] 勾燕洁,张守银,陈贵敏. 一种全柔顺六稳态机构的设计[J]. 机械工程学报,2015,51(7):61-66. GOU Yanjie,ZHANG Shouyin,CHEN Guimin. Design of a fully compliant six-stable state mechanism[J]. Journal of Mechanical Engineering,2015,51(7):61-66. [2] CHEN T,BILAL O R,SHEA K,et al. Harnessing bistability for directional propulsion of soft,untethered robots[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,1:201800386. [3] JUNG S P,JUNG G P,KOH J S,et al. Fabrication of composite and sheet metal laminated bistable jumping mechanism[J]. Journal of Mechanisms and Robotics,2015,7(2):1. [4] GU G,ZOU J,ZHAO R,et al. Soft wall-climbing robots[J]. Science Robotics,2018,3(25):eaat2874. [5] LI T,LI G,LIANG Y,et al. Fast-moving soft electronic fish[J]. Science Advances,2017,3(4):e1602045. [6] TANG C,LI B,FANG H,et al. A speedy,amphibian,robotic cube:Resonance actuation by a dielectric elastomer[J]. Sensors and Actuators A:Physical,2018,270:1-7. [7] CHEN Y,ZHAO H,MAO J,et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature,2019,575(7782):324-329. [8] GUPTA U,QIN L,WANG Y,et al. Soft robots based on dielectric elastomer actuators:A review[J]. Smart Materials and Structures,2019,28(10):103002. [9] 锁志刚. 介电高弹聚合物理论[J]. 力学进展,2011,41(6):730-750. SUO Zhigang. Theory of dielectric high elastic polymer[J]. Advances in Mechanics,2011,41(6):730-750. [10] LIU X,JIA S,LI B,et al. An electromechanical model for the estimation of breakdown voltage in stretchable dielectric elastomer[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(5):3099-3112. [11] CAO C,GAO X,CONN A T. A compliantly coupled dielectric elastomer actuator using magnetic repulsion[J]. Applied Physics Letters,2019,114(1). [12] WANG T,ZHANG J,HONG J,et al. Dielectric elastomer actuators for soft wave-handling systems[J]. 2016,1:10.1089soro.2016.0036. [13] LU T S Z S Q,WANG T J. Bioinspired bicipital muscle with fiber-constrained dielectric elastomer actuator[J]. Extreme Mechanics Letters,2016,6:75. [14] LIU L,ZHANG C,LUO M,et al. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers[J]. Smart Materials & Structures,2017,26(8):1. [15] CHI Z,SUN W,CHEN H,et al. Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes[J]. Journal of Applied Physics,2016,119(9):094108.094101-094108.094106. [16] WINGERT A,LICHTER M,DUBOWSKY S,et al. Hyper-redundant robot manipulators actuated by optimized binary-dielectric polymers[M]. SPIE,2002. [17] PLANTE J-S B,SANTER M,DUBOWSKY S,et al. Compliant bistable dielectric elastomer actuators for binary mechatronic systems[C]//ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2005:121-126. [18] BAR-COHEN Y,PLANTE J-S,DEVITA L M,et al. A road to practical dielectric elastomer actuators based robotics and mechatronics:Discrete actuation[C]. Electroactive Polymer Actuators and Devices (EAPAD) 2007,2007:1. [19] LENARCIC J W P. Advances in robot kinematics:analysis and design[M]. Springer,2008. [20] CHOUINARD P,PROULX S,LUCKING BIGUE′ J-P,et al. Design of an antagonistic bistable dielectric elastomer actuator using the Bergstrom-Boyce constitutive viscoelastic model[C/CD]//2009:111-121. [21] KOLLOSCHE M,ZHU J,SUO Z,et al. Complex interplay of nonlinear processes in dielectric elastomers[J]. Physical Review E,2012,85(5):051801. [22] LI B,CHEN H,ZHOU J. Modeling of the muscle-like actuation in soft dielectrics:Deformation mode and electromechanical stability[J]. Applied Physics A,2013,110(1):59-63. [23] LI T,ZOU Z,MAO G,et al. Electromechanical bistable behavior of a novel dielectric elastomer actuator[J]. Journal of Applied Mechanics,2013,81(4):041019. [24] DAVIDE G,CAMERON T,HELMUT F S. Dynamic performance of silicone dielectric elastomer actuators with bi-stable buckled beams[C]//Proc. SPIE,2014:1. [25] HODGINS M,YORK A,SEELECKE S. Modeling and experimental validation of a bi-stable out-of-plane DEAP actuator system[J]. Smart Materials and Structures,2011,20(9):1. [26] MICAH H,STEFAN S. Mechanical behavior of a bi-stable negative-rate bias spring system[C]//Proc. SPIE,2010:1. [27] MICAH H,STEFAN S. Experimental analysis of biasing elements for dielectric electro-active polymers[C]//Proc. SPIE,2011:1. [28] HODGINS M,YORK A,SEELECKE S. Modeling and experimental validation of a bi-stable out-of-plane DEAP actuator system[J]. Smart Materials and Structures,2011,20(9):094012. [29] HODGINS M,YORK A,SEELECKE S. Experimental comparison of bias elements for out-of-plane DEAP actuator system[J]. Smart Materials and Structures,2013,22(9):094016. [30] RIZZELLO G,FERRANTE F,NASO D,et al. Robust interaction control of a dielectric elastomer actuator with variable stiffness[J]. IEEE/ASME Transactions on Mechatronics,2017,22(4):1705-1716. [31] RIZZELLO G,NASO D,TURCHIANO B,et al. Robust position control of dielectric elastomer actuators based on LMI optimization[J]. IEEE Transactions on Control Systems Technology,2016,24(6):1909-1921. [32] RIZZELLO G,NASO D,YORK A,et al. Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback[J]. Smart Materials and Structures,2016,25(3):035034. [33] RIZZELLO G,FERRANTE F,NASO D,et al. Interaction control of a dielectric elastomer membrane with variable stiffness[C]//2017 American Control Conference (ACC),2017:210-215. [34] LOEW P,RIZZELLO G,SEELECKE S. Permanent magnets as biasing mechanism for improving the performance of circular dielectric elastomer out-of-plane actuators[C]//Proc. SPIE,2017:1. [35] HAU S,RIZZELLO G,HODGINS M,et al. Design and control of a high-speed positioning system based on dielectric elastomer membrane actuators[J]. IEEE/ASME Transactions on Mechatronics,2017,22(3):1259-1267. [36] LINNEBACH P,SIMONE F,RIZZELLO G,et al. Development,manufacturing,and validation of a dielectric elastomer membrane actuator-driven contactor[J]. Journal of Intelligent Material Systems and Structures,2018,30(4):636-648. [37] WANG N,CUI C,CHEN B,et al. Design and analysis of bistable dielectric elastomer actuator with buckling beam[C]//2018 International Conference on Manipulation,Automation and Robotics at Small Scales (MARSS),2018:1-6. [38] WANG N,CUI C,CHEN B,et al. Design of translational and rotational bistable actuators based on dielectric elastomer[J]. Journal of Mechanisms and Robotics,2019,11(4):1. [39] JEAN-SéBASTIEN P,LAUREN M D,STEVEN D. A road to practical dielectric elastomer actuators based robotics and mechatronics:Discrete actuation[C]//Proc. SPIE,2007:. [40] TADAKUMA K,DEVITA L M,PLANTE J S,et al. The experimental study of a precision parallel manipulator with binary actuation:With application to MRI cancer treatment[C]//2008 IEEE International Conference on Robotics and Automation,2008:2503-2508. [41] CHOUINARD P,PLANTE J. Bistable antagonistic dielectric elastomer actuators for binary robotics and mechatronics[J]. IEEE/ASME Transactions on Mechatronics,2012,17(5):857-865. [42] PROULX S,LUCKING BIGUé J-P,CHOUINARD P,et al. Dielectric elastomer jet valve for magnetic resonance imaging-compatible robotics[J]. Journal of Medical Devices,2013,7(2):1. [43] FOLLADOR M,CONN A T,MAZZOLAI B,et al. Active-elastic bistable minimum energy structures[J]. Applied Physics Letters,2014,105(14):1. [44] HAU S,BRUCH D,RIZZELLO G,et al. Silicone based dielectric elastomer strip actuators coupled with nonlinear biasing elements for large actuation strains[J]. Smart Materials and Structures,2018,27(7):1. [45] FOLLADOR M,CONN A T,ROSSITER J. Bistable minimum energy structures (BiMES) for binary robotics[J]. Smart Materials and Structures,2015,24(6):065037. [46] FOLLADOR M,CONN A T,MAZZOLAI B,et al. Active-elastic bistable minimum energy structures[J]. Applied Physics Letters,2014,105(14):141903. [47] GAO X,CAO C,GUO J,et al. Elastic electroadhesion with rapid release by integrated resonant vibration[J]. Advanced Materials Technologies,2019,4(1):1. [48] CAO C-J,HILL T L,CONN A T,et al. Nonlinear dynamics of a magnetically coupled dielectric elastomer actuator[J]. Physical Review Applied,2019,12(4):1. [49] VATANJOU H,HOJJAT Y,KARAFI M. Nonlinear dynamic analysis of dielectric elastomer minimum energy structures[J]. Applied Physics A,2019,125(9):583. [50] WANG Y,GUPTA U,PARULEKAR N,et al. A soft gripper of fast speed and low energy consumption[J]. Science China-Technological Sciences,2019,62(1):31-38. [51] ZHAO J,WANG S,MCCOUL D,et al. Bistable dielectric elastomer minimum energy structures[J]. Smart Materials and Structures,2016,25(7):1. [52] WANG S,HUANG B,MCCOUL D,et al. A method to increase the dynamic deformation of a dielectric elastomer minimum energy structures rotary joint without increase of the voltage amplitude[J]. Journal of Intelligent Material Systems and Structures,2019,30(14):2091-2098. [53] SHU W,ZHAOGANG H,MINGYU L,et al. DEMES rotary joint:theories and applications[C]//Proc. SPIE,2017. [54] JIANG X,PEZZULLA M,SHAO H,et al. Snapping of bistable,prestressed cylindrical shells[J]. EPL (Europhysics Letters),2018,122(6):64003. [55] LI W B,ZHANG W M,ZOU H X,et al. A novel variable stiffness mechanism for dielectric elastomer actuators[J]. Smart Materials and Structures,2017,26(8):1. [56] SHAO H,WEI S,JIANG X,et al. Bioinspired electrically activated soft bistable actuators[J]. Advanced Functional Materials,2018,28(35):1. [57] WEI S,SHAO H,GHOSH T K. Bioinspired bistable soft actuators[C]//Proc. SPIE,2019:1. [58] LI X Q,LI W B,ZHANG W M,et al. Magnetic force induced tristability for dielectric elastomer actuators[J]. Smart Materials and Structures,2017,26(10):1. [59] LIU Y,LIU B,YIN T,et al. Bistable rotating mechanism based on dielectric elastomer actuator[J]. Smart Materials and Structures,2020,29(1):1. [60] WANG N,CUI C,CHEN B,et al. Design of translational and rotational bistable actuators based on dielectric elastomer[J]. Journal of Mechanisms and Robotics-ransactions of the ASME,2019,11(4):1. [61] 曹玉君,尚建忠,梁科山,等. 软体机器人研究现状综述[J]. 机械工程学报,2012,48(3):25-33. CAO Yujun,SHANG Jianzhong,LIANG Keshan,et al. A review of software robot research status[J]. Journal of Mechanical Engineering,2012,48(3):25-33. [62] 王田苗,郝雨飞,杨兴帮,等. 软体机器人:结构、驱动、传感与控制[J]. 机械工程学报,2017,53(13):1-13. WANG Tianmiao,HAO Yufei,YANG Xingbang,et al. Software robot:Structure,drive,sensing and control[J]. Journal of Mechanical Engineering,2017,53(13):1-13. [63] 李铁风,李国瑞,梁艺鸣,等. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报,2016,48(4):756-766. LI Tiefeng,Li Guorui,Liang Yiming,et al. A review of the structural mechanism and driving materials of software robots[J]. Chinese Journal of Theoretical and Applied Mechani,2016,48(4):756-766. [64] 张进华,王韬,洪军,等. 软体机械手研究综述[J]. 机械工程学报,2017,53(13):19-28. ZHANG Jinhua,WANG Tao,HONG Jun,et al. A review of software manipulator research[J]. Journal of Mechanical Engineering,2017,53(13):19-28. [65] 丁汉. 共融机器人的基础理论和关键技术[J]. 机器人产业,2016(6):12-17. DING Han. Basic theory and key technology of communicative robot[J]. Robot Industry,2016(6):12-17. [66] LI W B,ZHANG W M,ZOU H X,et al. Bioinspired variable stiffness dielectric elastomer actuators with large and tunable load capacity[J]. Soft Robotics,2019,6(5):631-643. [67] LI W-B,ZHANG W-M,ZOU H-X,et al. A novel variable stiffness mechanism for dielectric elastomer actuators[J]. Smart Materials and Structures,2017,26(8):085033. [68] ZHAO J,ZHANG J,MCCOUL D,et al. Soft and fast hopping-running robot with speed of six times its body length per second[J]. Soft Robotics,2019,6(6):713-721. [69] WANG S,HUANG B,MCCOUL D,et al. A soft breaststroke-inspired swimming robot actuated by dielectric elastomers[J]. Smart Materials and Structures,2019,28(4):045006. [70] ZHAO J,NIU J,MCCOUL D,et al. A rotary joint for a flapping wing actuated by dielectric elastomers:Design and experiment[J]. Meccanica,2015,50(11):2815-2824. [71] FORTERRE Y,SKOTHEIM J M,DUMAIS J,et al. How the Venus flytrap snaps[J]. Nature,2005,433(7024):421-425. [72] KIM S W,KOH J S,CHO M,et al. Towards a bio-mimetic flytrap robot based on a snap-through mechanism[C].. 20103rd Ieee Ras and Embs International Conference on Biomedical Robotics and Biomechatronics,2010:534-539. [73] KIM S W,KOH J S,LEE J G,et al. Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface[J]. Bioinspiration & Biomimetics,2014,9(3):1. [74] HU N,BURGUENO R. Buckling-induced smart applications:Recent advances and trends[J]. Smart Materials and Structures,2015,24(6):1. [75] LEE J-G,RYU J,LEE H,et al. Saddle-shaped,bistable morphing panel with shape memory alloy spring actuator[J]. Smart Materials and Structures,2014,23(7):1. [76] ZHANG Z,CHEN D,WU H,et al. Non-contact magnetic driving bioinspired Venus flytrap robot based on bistable anti-symmetric CFRP structure[J]. Composite Structures,2016,135:17-22. [77] ZHANG Z,LI Y,YU X,et al. Bistable morphing composite structures:A review[J]. Thin-Walled Structures,2019,142:74-97. [78] ZHANG J,WANG Y,MCCOUL D,et al. Viscoelastic creep elimination in dielectric elastomer actuation by preprogrammed voltage[J]. Applied Physics Letters,2014,105(21):212904. [79] 刘晨,李卓远,陈花玲. 一种新型柔性静电吸附变刚度结构[J]. 西安交通大学学报,2018,52(12):18-24. LIU Chen,Li Zhuoyuan,Chen Hualing. A new type of flexible electrostatic adsorption variable stiffness structure[J]. Journal of Xi'an Jiaotong University,2018,52(12):18-24. [80] MAILMAN M,CHAKRABORTY B. A signature of a thermodynamic phase transition in jammed granular packings:growing correlations in force space[J]. Journal of Statistical Mechanics:Theory and Experiment,2011,2011(7):L07002. [81] GOODRICH C P,LIU A J,NAGEL S R. Contact nonlinearities and linear response in jammed particulate packings[J]. Physical Review E,2014,90(2):022201. [82] ALEGRE P,ARSLAN K,CARRIAZO A,et al. Some special types of developable ruled surface[J]. Hacettepe Journal of Mathematics and Statistics,2010,39(3):319-325. [83] CHEN Z,GUO Q,MAJIDI C,et al. Nonlinear geometric effects in mechanical bistable morphing structures[J]. Physical Review Letters,2012,109(11):1. [84] NELSON T G,ZIMMERMAN T K,MAGLEBY S P,et al. Developable mechanisms on developable surfaces[J]. Science Robotics,2019,4(27):1. [85] 陈浪,秦大同,郑小光. 基于形状特征的自由曲面建模技术[J]. 机械工程学报,2002,38(11):105-108. CHEN Lang,QIN Datong,ZHENG Xiaoguang. Free form surface modeling based on shape characteristics in reverse engineering[J]. Chinese Journal of Mechanical Engineering,2002,38(11):105-108. [86] HAJIESMAILI E,KHARE E,CHORTOS A,et al. Voltage-controlled morphing of dielectric elastomer circular sheets into conical surfaces[J]. Extreme Mechanics Letters,2019,30:1. [87] DUDUTA M,BERLINGER F C J,NAGPAL R,et al. Electrically-latched compliant jumping mechanism based on a dielectric elastomer actuator[J]. Smart Materials and Structures,2019,28(9):1. [88] YU Z,YUAN W,BROCHU P,et al. Large-strain,rigid-to-rigid deformation of bistable electroactive polymers[J]. Applied Physics Letters,2009,95(19):1. [89] YUN S,NIU X,YU Z,et al. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation[J]. Advanced Materials,2012,24(10):1321-1327. [90] NIU X,YANG X,BROCHU P,et al. Bistable large-strain actuation of interpenetrating polymer networks[J]. Advanced Materials,2012,24(48):6513-6519. [91] REN Z,HU W,LIU C,et al. Phase-changing bistable electroactive polymer exhibiting sharp rigid-to-rubbery transition[J]. Macromolecules,2016,49(1):134-140. [92] QIU Y,LU Z,PEI Q. Refreshable tactile display based on a bistable electroactive polymer and a stretchable serpentine joule heating electrode[J]. ACS Applied Materials & Interfaces,2018,10(29):24807-24815. [93] ZIHANG P,YU Q,YE S,et al. Bistable electroactive polymers for refreshable tactile displays[J]. Proceedings of the SPIE,2019,10966:109662C (109667 pp.)-109662C (109667 pp.). [94] KEPLINGER C,LI T,BAUMGARTNER R,et al. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation[J]. Soft Matter,2012,8(2):285-288. [95] LI T,KEPLINGER C,BAUMGARTNER R,et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability[J]. Journal of the Mechanics and Physics of Solids,2013,61(2):611-628. [96] KOLLOSCHE M,ZHU J,SUO Z,et al. Complex interplay of nonlinear processes in dielectric elastomers[J]. Physical Review E,2012,85(5):1. [97] ZHAO X,WANG Q. Harnessing large deformation and instabilities of soft dielectrics:Theory,experiment,and application[J]. Applied Physics Reviews,2014,1(2):1. [98] BO L,SUO Z. Extension limit,polarization saturation,and snap-through instability of dielectric elastomers[J]. International Journal of Smart & Nano Materials,2011,2(2):59-67. [99] JIANG Y,KORPAS L M,RANEY J R. Bifurcation-based embodied logic and autonomous actuation[J]. Nature Communications,2019,10:1. [100] 陈花玲,罗斌,朱子才,等. 4D打印:智能材料与结构增材制造技术的研究进展[J]. 西安交通大学学报,2018,52(2):1-12. CHEN Hualing,LUO Bin,ZHU Zicai,et al. 4D printing:research progress of intelligent materials and structural additive manufacturing technology[J]. Journal of Xi'an Jiaotong University,2018,52(2):1-12. [101] 魏洪秋,万雪,刘彦菊,等. 4D打印形状记忆聚合物材料的研究现状与应用前景[J]. 中国科学:技术科学,2018,48(1674-7259):2. WEI Hongqiu,WAN Xue,LIU Yanju,et al. Research status and application prospects of 4D printed shape memory polymer materials[J]. Science in China:Technology Science,2018,48(1674-7259):2. |