机械工程学报 ›› 2020, Vol. 56 ›› Issue (15): 26-38.doi: 10.3901/JME.2020.15.026
高一聪, 曾思远, 冯毅雄, 郑浩, 邱浩, 谭建荣
收稿日期:
2019-08-04
修回日期:
2019-12-19
出版日期:
2020-08-05
发布日期:
2020-10-19
通讯作者:
冯毅雄(通信作者),男,1975年出生,博士,教授,博士研究生导师。主要研究方向为现代产品设计理论。E-mail:fyx@zju.edu.cn
作者简介:
高一聪,男,1982年出生,博士,副教授。主要研究方向为产品设计方法学。E-mail:gaoyicong@zju.edu.cn基金资助:
GAO Yicong, ZENG Siyuan, FENG Yixiong, ZHENG Hao, QIU Hao, TAN Jianrong
Received:
2019-08-04
Revised:
2019-12-19
Online:
2020-08-05
Published:
2020-10-19
摘要: 4D打印是结合了3D打印技术和智能材料的一种智能结构增材制造技术。通过几何结构设计、智能材料分布设计,4D打印可以制备具有可调节形状、特性或功能的可控变形结构。可控变形结构通过外界的刺激,按设计好的特定方式发生形状、性能和功能的变化,从而使其满足不同领域的应用需求。对可控变形结构的二维结构设计方法和三维变形设计方法的技术研究进展进行综述,总结了支持4D打印的可控变形结构设计的突出成果以及创新性技术。结合4D打印的概念和支持4D打印的可控变形结构设计的研究现状,对其在机械、生物医学等领域的应用进行了展望。
中图分类号:
高一聪, 曾思远, 冯毅雄, 郑浩, 邱浩, 谭建荣. 支持4D打印的可控变形结构设计研究进展[J]. 机械工程学报, 2020, 56(15): 26-38.
GAO Yicong, ZENG Siyuan, FENG Yixiong, ZHENG Hao, QIU Hao, TAN Jianrong. Review of Design of Programmable Morphing Composite Structures by 4D Printing[J]. Journal of Mechanical Engineering, 2020, 56(15): 26-38.
[1] PEI E. 4D Printing:Dawn of an emerging technology cycle[J]. Assembly Automation,2014,34(4):310-314. [2] PEI E. 4D printing-revolution or fad?[J]. Assembly Automation,2014,34(2):123-127. [3] 王亚男,王芳辉,汪中明,等. 4D打印的研究进展及应用展望[J]. 航空材料学报,2018,38(2):70-76. WANG Yanan,WANG Fanghui,WANG Zhongming,et al. Research progress and application perspectives of 4d printing[J]. Journal of Aeronautical Materials,2018,38(2):70-76. [4] TIBBITS S. 4D printing:Multi-material shape change[J]. Architectural Design,2014,84(1):116-121. [5] 苏瑾. 4D打印-智能材料的增材制造技术[J]. 现代制造技术与装备,2017(3):143-143. SU Jin. 4D Printing-intelligent material of the material manufacturing technology[J]. Modern Manufacturing Technology and Equipment,2017(3):143-145. [6] RAVIV D,ZHAO W,MCKNELLY C,et al. Active printed materials for complex self-evolving deformations[J]. Scientific Reports,2014,4:7422. [7] KOTIKIAN A,TRUBY R L,BOLEY J W,et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order[J]. Advanced Materials,2018,30(10):1706164. [8] JAMAL M,KADAM S S,XIAO R,et al. Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers[J]. Advanced Healthcare Materials,2013,2(8):1142-1150. [9] GE Q,QI H J,DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters,2013,103(13):131901. [10] GE Q,DUNN C K,QI H J,et al. Active origami by 4D printing[J]. Smart Materials and Structures,2014,23(9):094007. [11] ZHANG Q,ZHANG K,HU G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique[J]. Scientific Reports,2016,6:22431. [12] KUKSENOK O,BALAZS A C. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers[J]. Materials Horizons,2016,3(1):53-62. [13] GLADMAN A S,MATSUMOTO E A,NUZZO R G,et al. Biomimetic 4D printing[J]. Nature Materials,2016,15(4):413. [14] BAKARICH S E,GORKIN Ⅲ R,PANHUIS M I H,et al. 4D printing with mechanically robust,thermally actuating hydrogels[J]. Macromolecular Rapid Communications,2015,36(12):1211-1217. [15] KHOO Z X,TEOH J E M,LIU Y,et al. 3D printing of smart materials:A review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping,2015,10(3):103-122. [16] ROY D,CAMBRE J N,SUMERLIN B S. Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science,2010,35(1-2):278-301. [17] STUART M A C,HUCK W T S,GENZER J,et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials,2010,9(2):101. [18] SUN L,HUANG W M,DING Z Stimulus-responsive shape memory materials:a review[J]. Materials & Design,2012,33:577-640. [19] MENG H,LI G. A review of stimuli-responsive shape memory polymer composites[J]. Polymer,2013,54(9):2199-2221. [20] DENG D,CHEN Y. 4D printing:Design and fabrication of 3D shell structures with curved surfaces using controlled self-folding[C]//ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers,2015:V001T02A070-V001T02A070. [21] SMELA E. Conjugated polymer actuators for biomedical applications[J]. Advanced Materials,2003,15(6):481-494. [22] WANG M F,MALEKI T,ZIAIE B. Enhanced 3-D folding of silicon microstructures via thermal shrinkage of a composite organic/inorganic bilayer[J]. Journal of Microelectromechanical Systems,2008,17(4):882-889. [23] YASU K,INAMI M. Popapy:Instant paper craft made up in a microwave oven[C]//International Conference on Advances in Computer Entertainment Technology. Springer,Berlin,Heidelberg,2012:406-420. [24] IONOV L. Biomimetic 3D self-assembling biomicroconstructs by spontaneous deformation of thin polymer films[J]. Journal of Materials Chemistry,2012,22(37):19366-19375. [25] 魏洪秋,万雪,刘彦菊,等. 4D打印形状记忆聚合物材料的研究现状与应用前景[J]. 中国科学:技术科学,2018,48(1):2-16. WEI Hongqiu,WAN Xue,LIU Yanju,et al. 4D printing of shape memory polymers:Research status and application prospect[J]. Scientia Sinica Technologica,2018,48:2-16. [26] HAN M W,AHN S H. Blooming knit flowers:Loop-linked soft morphing structures for soft robotics[J]. Advanced Materials,2017,29(13):1606580. [27] PERAZA-HERNANDEZ E,HARTL D,GALVAN E,et al. Design and optimization of a shape memory alloy-based self-folding sheet[J]. Journal of Mechanical Design,2013,135(11):111007. [28] PERAZA-HERNANDEZ E A,HARTL D J,MALAK JR R J. Design and numerical analysis of an SMA mesh-based self-folding sheet[J]. Smart Materials and Structures,2013,22(9):094008. [29] LENDLEIN A,LANGER R. Biodegradable,elastic shape-memory polymers for potential biomedical applications[J]. Science,2002,296(5573):1673-1676. [30] XIE T. Tunable polymer multi-shape memory effect[J]. Nature,2010,464(7286):267. [31] YU K,GE Q,QI H J. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers[J]. Nature Communications,2014,5:3066. [32] ZHAO Q,QI H J,XIE T. Recent progress in shape memory polymer:New behavior,enabling materials,and mechanistic understanding[J]. Progress in Polymer Science,2015,49:79-120. [33] LENDLEIN A,JIANG H,JÜNGER O,et al. Light-induced shape-memory polymers[J]. Nature,2005,434(7035):879. [34] SCOTT T F,SCHNEIDER A D,COOK W D,et al. Photoinduced plasticity in cross-linked polymers[J]. Science,2005,308(5728):1615-1617. [35] RYU J,D'AMATO M,CUI X,et al. Photo-origami-bending and folding polymers with light[J]. Applied Physics Letters,2012,100(16):161908. [36] MU X,SOWAN N,TUMBIC J A,et al. Photo-induced bending in a light-activated polymer laminated composite[J]. Soft Matter,2015,11(13):2673-2682. [37] YU Y,NAKANO M,IKEDA T. Photomechanics:Directed bending of a polymer film by light[J]. Nature,2003,425(6954):145. [38] VAN OOSTEN C L,BASTIAANSEN C W M,BROER D J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light[J]. Nature Materials,2009,8(8):677. [39] WARE T H,MCCONNEY M E,WIE J J,et al. Voxelated liquid crystal elastomers[J]. Science,2015,347(6225):982-984. [40] LEE H,XIA C,FANG N X. First jump of microgel; actuation speed enhancement by elastic instability[J]. Soft Matter,2010,6(18):4342-4345. [41] KIM J,HANNA J A,HAYWARD R C,et al. Thermally responsive rolling of thin gel strips with discrete variations in swelling[J]. Soft Matter,2012,8(8):2375-2381. [42] SHIM T S,KIM S H,HEO C J,et al. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers[J]. Angewandte Chemie International Edition,2012,51(6):1420-1423. [43] NA J H,EVANS A A,BAE J,et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers[J]. Advanced Materials,2015,27(1):79-85. [44] VAN MANEN T,JANBAZ S,ZADPOOR A A. Programming 2D/3D shape-shifting with hobbyist 3D printers[J]. Materials Horizons,2017,4(6):1064-1069. [45] DING Z,WEI P,ZIAIE B. Self-folding smart 3D microstructures using a hydrogel-Parylene bilayer[C]//2010 18th Biennial University/Government/Industry Micro/Nano Symposium. IEEE,2010:1-4. [46] DING Z,YUAN C,PENG X,et al. Direct 4D printing via active composite materials[J]. Science Advances,2017,3(4):e1602890. [47] DENG D,KWOK T H,CHEN Y. Four-dimensional printing:Design and fabrication of smooth curved surface using controlled self-folding[J]. Journal of Mechanical Design,2017,139(8):081702. [48] TIAN X,LIU T,YANG C,et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing,2016,88:198-205. [49] YANG C,TIAN X,LIU T,et al. 3D printing for continuous fiber reinforced thermoplastic composites:Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. [50] WANG Q,TIAN X,HUANG L,et al. Programmable morphing composites with embedded continuous fibers by 4D printing[J]. Materials & Design,2018,155:404-413. [51] GUO W,LI M,ZHOU J. Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels[J]. Smart Materials and Structures,2013,22(11):115028. [52] GUAN J,HE H,HANSFORD D J,et al. Self-folding of three-dimensional hydrogel microstructures[J]. The Journal of Physical Chemistry B,2005,109(49):23134-23137. [53] dE LEON A,BARNES A C,THOMAS P,et al. Transfer printing of self-folding polymer-metal bilayer particles[J]. ACS Applied Materials & Interfaces,2014,6(24):22695-22700. [54] DENG D,CHEN Y. Origami-based self-folding structure design and fabrication using projection based stereolithography[J]. Journal of Mechanical Design,2015,137(2):021701. [55] KWOK T H,WANG C C L,DENG D,et al. Four-dimensional printing for freeform surfaces:Design optimization of origami and kirigami structures[J]. Journal of Mechanical Design,2015,137(11):111413. [56] AN B,RUS D. Designing and programming self-folding sheets[J]. Robotics and Autonomous Systems,2014,62(7):976-1001. [57] ROUDAUT A,KARNIK A,LÖCHTEFELD M,et al. Morphees:toward high shape resolution in self-actuated flexible mobile devices[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,2013:593-602. [58] GOMES A,NESBITT A,VERTEGAAL R. MorePhone:A study of actuated shape deformations for flexible thin-film smartphone notifications[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,2013:583-592. [59] CAMPBELL T A,TIBBITS S,GARRETT B. The programmable world[J]. Scientific American,2014,311(5):60-65. [60] PERAZA-HERNANDEZ E A,HARTL D J,MALAK JR R J,et al. Origami-inspired active structures:A synthesis and review[J]. Smart Materials and Structures,2014,23(9):094001. [61] PERAZA-HERNANDEZ E A,HARTL D J,MALAK JR R J. Design and numerical analysis of an SMA mesh-based self-folding sheet[J]. Smart Materials and Structures,2013,22(9):094008. [62] HALBERT T,MOGHADAS P,MALAK R,et al. Control of a shape memory alloy based self-folding sheet[C]//ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers,2014:V05BT08A041-V05BT08A041. [63] PERAZA HERNANDEZ E A,HARTL D J,AKLEMAN E,et al. Connectivity of shape memory alloy-based self-folding structures[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. 2014:1415. [64] HARTL D,LANE K,MALAK R. Computational design of a reconfigurable origami space structure incorporating shape memory alloy thin films[C]//ASME 2012 Conference on Smart Materials,Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers,2012:277-285. [65] HARTL D,LANE K,MALAK R. Design of a massively reconfigurable origami space structure incorporating shape memory alloys[C]//ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers,2012:115-122. [66] PERAZA-HERNANDEZ E,HARTL D,LAGOUDAS D. Modeling of shape memory alloy wire meshes using effective lamina properties for improved analysis efficiency[C]//ASME 2013 Conference on Cmart Materials,Adaptive Tructures and INntelligent Systems. American Society of Mechanical Engineers,2013:V001T01A009-V001T01A009. [67] ONAL C D,WOOD R J,RUS D. An origami-inspired approach to worm robots[J]. IEEE/ASME Transactions on Mechatronics,2013,18(2):430-438. [68] LEE D Y,KIM J S,KIM S R,et al. The deformable wheel robot using magic-ball origami structure[C]//ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers,2013:V06BT07A040-V06BT07A040. [69] FIROUZEH A,SUN Y,LEE H,et al. Sensor and actuator integrated low-profile robotic origami[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2013:4937-4944. [70] FIROUZEH A,SUN Y,LEE H,et al. Sensor and actuator integrated low-profile robotic origami[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2013:4937-4944. [71] SCHWEIGER J,BEUER F,STIMMELMAYR M,et al. Histo-anatomic 3D printing of dental structures[J]. British Dental Journal,2016,221(9):555. [72] LIU Y,BOYLES J K,GENZER J,et al. Self-folding of polymer sheets using local light absorption[J]. Soft Matter.,2012,8(6):1764-1769. [73] LEE A P,CIARLO D R,KRULEVITCH P A,et al. A practical microgripper by fine alignment,eutectic bonding and SMA actuation[J]. Sensors and Actuators A:Physical,1996,54(1-3):755-759. [74] LAFLIN K E,MORRIS C J,MUQEEM T,et al. Laser triggered sequential folding of microstructures[J]. Applied Physics Letters,2012,101(13):131901. [75] ZAKHARCHENKO S,PURETSKIY N,STOYCHEV G,et al. Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes[J]. Soft Matter,2010,6(12):2633-2636. [76] STOYCHEV G,PURETSKIY N,IONOV L. Self-folding all-polymer thermoresponsive microcapsules[J]. Soft Matter,2011,7(7):3277-3279. [77] LUCHNIKOV V,LONOV L,STAMM M. Self-rolled polymer tubes:Novel tools for microfluidics,microbiology,and drug-delivery systems[J]. Macromolecular Rapid Communications,2011,32(24):1943-1952. [78] IONOV L. Nature-inspired stimuli-responsive self-folding materials[J]. Intelligent Stimuli-Responsive Materials:From Well-Defined Nanostructures to Applications,2013:1-16. [79] SHIM T S,KIM S H,HEO C J,et al. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers[J]. Angewandte Chemie International Edition,2012,51(6):1420-1423. [80] HE H,GUAN J,LEE J L. An oral delivery device based on self-folding hydrogels[J]. Journal of Controlled Release,2006,110(2):339-346. [81] GUAN J,HE H,HANSFORD D J,et al. Self-folding of three-dimensional hydrogel microstructures[J]. The Journal of Physical Chemistry B,2005,109(49):23134-23137. [82] BASSIK N,BRAFMAN A,ZARAFSHAR A M,et al. Enzymatically triggered actuation of miniaturized tools[J]. Journal of the American Chemical Society,2010,132(46):16314-16317. [83] RANDHAWA J S,LEONG T G,BASSIK N,et al. Pick-and-place using chemically actuated microgrippers[J]. Journal of the American Chemical Society,2008,130(51):17238-17239. [84] ZAKHARCHENKO S,SPERLING E,IONOV L. Fully biodegradable self-rolled polymer tubes:A candidate for tissue engineering scaffolds[J]. Biomacromolecules,2011,12(6):2211-2215. [85] JEONG K U,JANG J H,KIM D Y,et al. Three-dimensional actuators transformed from the programmed two-dimensional structures via bending,twisting and folding mechanisms[J]. Journal of Materials Chemistry,2011,21(19):6824-6830. [86] KUMAR K,NANDAN B,LUCHNIKOV V,et al. A novel approach for the fabrication of silica and silica/metal hybrid microtubes[J]. Chemistry of Materials,2009,21(18):4282-4287. [87] KIM Y,YUK H,ZHAO R,et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature,2018,558(7709):274. [88] VON LOCKETTE P,SHERIDAN R. Folding actuation and locomotion of novel magneto-active elastomer (MAE) composites[C]//ASME 2013 Conference on Smart Materials,Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers,2013:V001T01A020-V001T01A020. [89] SUO Z. Theory of dielectric elastomers[J]. Acta Mechanica Solida Sinica,2010,23(6):549-578. [90] SHANKAR R,GHOSH T K,SPONTAK R J. Dielectric elastomers as next-generation polymeric actuators[J]. Soft Matter,2007,3(9):1116-1129. [91] BAR-COHEN Y,ZHANG Q. Electroactive polymer actuators and sensors[J]. MRS Bulletin,2008,33(3):173-181. [92] WHITE P J,LATSCHA S,SCHLAEFER S,et al. Dielectric elastomer bender actuator applied to modular robotics[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2011:408-413. [93] AHMED S,LAUFF C,CRIVARO A,et al. Multi-field responsive origami structures:Preliminary modeling and experiments[C]//ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers,2013:V06BT07A028-V06BT07A028. [94] MCGOUGH K,AHMED S,FRECKER M,et al. Finite element analysis and validation of dielectric elastomer actuators used for active origami[J]. Smart Materials and Structures,2014,23(9):094002. [95] AHMED S,OUNAIES Z,FRECKER M. Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures[J]. Smart Materials and Structures,2014,23(9):094003. [96] RYU J,D'AMATO M,CUI X,et al. Photo-origami-bending and folding polymers with light[J]. Applied Physics Letters,2012,100(16):161908. [97] LONG K N,SCOTT T F,QI H J,et al. Photomechanics of light-activated polymers[J]. Journal of the Mechanics and Physics of Solids,2009,57(7):1103-1121. [98] LONG K N,SCOTT T F,DUNN M L,et al. Photo-induced deformation of active polymer films:Single spot irradiation[J]. International Journal of Solids and Structures,2011,48(14-15):2089-2101. [99] 王敬轩. 电控热变形4D打印技术研究[D]. 哈尔滨:哈尔滨工业大学,2018. WANG Jingxuan. Research on electronically controlled thermal deformation 4D printing technology[M]. Harbin:Harbin Institute of Technology,2018. [100] 郑志超. 聚乳酸基形状记忆聚合物的性能研究及其4D打印[D]. 哈尔滨:哈尔滨工业大学,2017. ZHENG Zhichao. Study on polylactic acid based shape memory polymer and 4D printing[M]. Harbin:Harbin Institute of Technology,2017. [101] 范智超,张帆,张一慧. 三维细微观结构的折叠和组装方法[J]. 科学通报,2018,63(23):2335-2347. FAN Zhichao,ZHANG Fan,ZHANG Yihui. Folding and assembly methods for forming three-dimensional mesostructures[J]. Chinese Science Bulletin,2018,63(23):2335-2347. [102] 苏亚东,王向明,吴斌,等. 4D打印技术在航空飞行器研制中的应用潜力[J]. 航空材料学报,2018,38(2):59-69. SU Yadong,WANG Xiangming,WU Bin,et al. Application potential of 4D printing technology in development of aircraft[J]. Journal of Aeronautical Materials,2018,38(2):59-69. [103] 施虎,何彬,汪政,等. 磁控形状记忆合金驱动特性及其在液压阀驱动器中的应用分析[J]. 机械工程学报,2018,54(20):235-244. SHI Hu,HE Bin,WANG Zheng,et al. Magneto-mechanical behavior of magnetic shape memory alloy and its application in hydraulic valve actuator[J]. Journal of Mechanical Engineering,2018,54(20):235-244. [104] 田小永,王清瑞,李涤尘,等. 可控变形复合材料结构4D打印[J]. 航空制造技术,2019,62(Z1):20-27. TIAN Xiaoyong,WANG Qingrui,LI Dichen,et al. Programmable morphing composite structures by 4D printing[J]. Aeronautical Manufacturing Technology,2019,62(Z1):20-27. [105] 张力谨. 基于形状记忆聚合物的4D打印血管支架的力学性能研究[D]. 哈尔滨:哈尔滨工业大学,2018. ZHANG Lijin. The study on mechanical properties of 4D printed vascular stents based on shape memory polymer[D]. Harbin:Harbin Institute of Technology,2018. |
[1] | 赵欣, 黄金杰. 基于RSM-RVEA的FDM增材制造工艺参数优化方法[J]. 机械工程学报, 2024, 60(19): 277-297. |
[2] | 黄金杰, 赵欣. 3D打印中的分层计算研究进展[J]. 机械工程学报, 2024, 60(17): 235-262. |
[3] | 孙江涛, 张净凯, 程坦, 范志永, 叶春生, 蔡道生, 魏青松. 吸热墨水喷射3D打印实验平台研制与自制墨水打印试验研究[J]. 机械工程学报, 2024, 60(17): 263-271. |
[4] | 侯佳奇, 张广明, 于志浩, 李印, 马令轩, 韩志峰, 石凯, 郭辰旭, 兰红波. 平板电极电场驱动多喷头喷射高效微3D打印方法和规律研究[J]. 机械工程学报, 2024, 60(17): 310-320. |
[5] | 喻康, 傅建中, 贺永. 面向软组织缺损修复的组织工程支架研究进展[J]. 机械工程学报, 2024, 60(15): 255-271. |
[6] | 刘明良, 唐颀, 田小永, 刘腾飞, 秦滢杰, 李涤尘. 连续纤维增强加筋圆柱壳回转3D打印工艺及其轴压性能研究[J]. 机械工程学报, 2024, 60(15): 283-290. |
[7] | 彭子龙, 吴金印, 王萌杰, 李一楠, 兰红波. 电场驱动微尺度3D打印掩膜电解加工微结构[J]. 机械工程学报, 2024, 60(15): 420-436. |
[8] | 王福吉, 王公硕, 王洪全, 付饶, 吴博, 王琦. 短-连续碳纤维同步增强热塑性复合材料预浸线材制备及3D打印工艺分析[J]. 机械工程学报, 2024, 60(11): 283-295. |
[9] | 穆英朋, 刘富初, 张驰, 黄捷飞, 刘鑫, 韩光超, 樊自田, 许峰. 水溶性氧化钙陶瓷型芯的挤出式3D打印参数优化与表面精度控制研究[J]. 机械工程学报, 2024, 60(1): 170-178. |
[10] | 兰红波, 李红珂, 钱垒, 张广明, 于志浩, 孙鹏, 许权, 赵佳伟, 王飞, 朱晓阳. 电场驱动喷射沉积微纳3D打印及其在先进电路和电子制造中的应用[J]. 机械工程学报, 2023, 59(9): 230-251. |
[11] | 罗来马, 汤俊宇, 吴玉程. WC-Co硬质合金的成型工艺研究进展[J]. 机械工程学报, 2023, 59(8): 60-73. |
[12] | 高一聪, 曾思远, 许君君, 郑浩, 谭建荣. 4D打印功能构件的热致变形模式分析与变形设计研究[J]. 机械工程学报, 2023, 59(3): 189-199. |
[13] | 李汶海, 张广明, 于尊, 韩志峰, 马令轩, 彭子龙, 肖淼, 徐林, 西永明, 兰红波. 3D打印导电生物支架的研究进展与挑战[J]. 机械工程学报, 2023, 59(23): 186-210. |
[14] | 李佩锡, 周德志, 杨长明, 饶玮祎, 林峰, 欧阳礼亮. 生物3D打印研究进展:动物、植物及微生物细胞的增材制造[J]. 机械工程学报, 2023, 59(19): 237-252. |
[15] | 任萌, 朱丽娜, 于鹤龙, 邢志国, 王海斗, 徐滨士. 面向机械损伤状态监测的智能材料研究进展[J]. 机械工程学报, 2023, 59(18): 42-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||