• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (10): 64-77.doi: 10.3901/JME.2020.10.064

• 材料科学与工程 • 上一篇    下一篇

扫码分享

热喷涂涂层/基体异质界面结合强度优化理论与方法现状研究

刘明1, 陈书赢1,2, 马国政1, 邢志国1, 何鹏飞1, 王海斗1, 霍明亮3   

  1. 1. 陆军装甲兵学院装备再制造技术国防科技重点实验室 北京 100072;
    2. 中国航天员科研训练中心人因工程重点实验室 北京 100094;
    3. 中国人民解放军63611部队 库尔勒 841000
  • 收稿日期:2019-04-01 修回日期:2019-11-01 出版日期:2020-05-20 发布日期:2020-06-11
  • 通讯作者: 陈书赢(通信作者),男,1990年出生,博士。主要研究方向为再制造工程、人因工程。E-mail:chenshuying90@163.com
  • 作者简介:刘明,男,1979年出生,博士。主要研究方向为再制造工程、表面工程、热喷涂技术。E-mail:hzaam@163.com;马国政,男,1984年出生,博士,副研究员。主要研究方向为再制造工程。E-mail:magz0929@163.com;邢志国,男,1979年出生,博士。主要研究方向为再制造工程。E-mail:xingzg2011@163.com;何鹏飞,男,1993年出生,博士研究生。主要研究方向为再制造工程。E-mail:hepengfei93@163.com;王海斗,男,1969年出生,博士,研究员,博士研究生导师。主要研究方向为再制造工程。E-mail:wanghaidou@aliyun.com;霍明亮,男,1989年出生,硕士。主要研究方向为表面工程、航天测试发射。E-mail:554296566@qq.com
  • 基金资助:
    国家自然科学基金(51675531,51535011)和北京市自然科学基金(3172038)资助项目。

Research Status of Optimization Theory and Method of Thermal Spraying Coating/Substrate Heterogeneous Interface Bonding

LIU Ming1, CHEN Shuying1,2, MA Guozheng1, XING Zhiguo1, HE Pengfei1, WANG Haidou1, HUO Mingliang3   

  1. 1. National Key Lab for Remanufacturing, Academy of Army Armored Forces, Beijing 100072;
    2. National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094;
    3. The People's Liberation Army 63611 Troops, Korls 841000
  • Received:2019-04-01 Revised:2019-11-01 Online:2020-05-20 Published:2020-06-11

摘要: 结合强度是评价热喷涂涂层质量的重要指标之一,直接影响装备零部件的服役安全与寿命。由于涂层本质上是由大量高速飞行的熔融态喷涂粒子撞击基体迅速铺展凝固、逐层堆垛所形成的,无法在基体界面形成微熔池或有效的元素扩渗,因而涂层/基体界面通常以机械结合为主,冶金结合的含量则相对较少。分别从基体表面粗化预处理、原位元素扩渗及重熔后处理三个角度,详细综述不同处理工艺对涂层/基体界面机械与冶金两种结合机理提升的影响规律。结果表明,粗化后的基体能够增加界面锚合、嵌合及咬合的机械结合程度,同时增大熔滴与基体表面的润湿程度,减小界面裂纹及热应力;通过调节粒子飞行特性(包括速度、熔融状态、物相成分、几何结构、空间分布等)与基体表面状态(温度、化学成分等)等,降低撞击基体后的凝固速度,促进界面元素扩渗,有利于形成微冶金结合;原位激光辅助喷涂及各类重熔后处理技术则可以通过引入的热源,进一步促进涂层内各组元的充分混合、消除微裂纹及孔隙等结构缺陷、调控整体热应力,提升涂层结合强度。

关键词: 热喷涂涂层, 结合强度, 机械结合, 冶金结合, 表面工程

Abstract: Bonding strength is one of the important indicators for evaluating the quality of thermal spray coatings, which directly affects the service safety and life of equipment components. Since the coating is essentially formed by a large number of sprayed particles heated by a heat source, which is formed by high kinetic energy impacting on the substrate and being layered and stacked, it is impossible to form a micro-melting pool or effective elemental diffusion at the interface of the substrate. The coating/substrate interface is usually based on mechanical bonding, and the metallurgical bonding is relatively small. The effects of roughening pretreatment, in-situ elemental diffusion and remelting post-treatment on the surface of the substrate are reviewed. The effects of different treatment processes on the mechanical and metallurgical bonding mechanism of the coating/substrate interface are reviewed in detail. The results show that the roughened matrix can increase the mechanical bonding degree of interface anchoring, fitting and occlusion, increase the wettability of the droplet and the surface of the substrate, reduce the interface crack and thermal stress, and adjust the flight characteristics of the particles (including speed, molten state, phase composition, geometric structure, spatial distribution, etc.) and the surface state of the substrate (temperature, chemical composition, etc.). Reducing the solidification speed after impacting the substrate and promoting the expansion of interface elements can facilitate the formation of micro-metallurgy Combination. In-situ laser-assisted spraying and various remelting post-treatment techniques can further promote the thorough mixing of components in the coating, eliminate structural defects such as microcracks and pores, regulate overall thermal stress, and improve coating bonding strength by introducing a heat source.

Key words: thermal spraying coating, bond strength, mechanical bonding, metallurgical bonding, surface engineering

中图分类号: