• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (5): 89-96.doi: 10.3901/JME.2019.05.089

• 机械动力学 • 上一篇    下一篇

永磁变刚度柔性关节的力学分析与控制器设计

张明1, 房立金2, 孙凤3, 岡宏一4   

  1. 1. 东北大学机械工程与自动化学院 沈阳 110819;
    2. 东北大学机器人科学与工程学院 沈阳 110169;
    3. 沈阳工业大学机械工程学院 沈阳 110819;
    4. 高知工科大学智能机械系统工学科 高知 782-8502 日本
  • 收稿日期:2018-03-28 修回日期:2018-10-21 出版日期:2019-03-05 发布日期:2019-03-05
  • 通讯作者: 房立金(通信作者),男,1965年出生,博士,教授,博士研究生导师。主要研究方向为机器人及自动化控制。E-mail:ljfang@mail.neu.edu.cn
  • 作者简介:张明,男,1988年出生,博士研究生。主要研究方向为柔性机器人技术与磁悬浮技术。E-mail:zm201234@hotmail.com;孙凤,男,1978年出生,博士,教授,博士研究生导师。主要研究方向为磁悬浮技术与数控技术。E-mail:sunfeng@sut.edu.cn;岡宏一,男,1958年出生,教授,博士研究生导师。主要研究方向为磁悬浮技术与机器人技术。E-mail:oka.koichi@kochi-tech.ae.jp
  • 基金资助:
    国家自然科学基金(51575092,51105257)和国家重点研发计划重点专项(2017YFB1300900)资助项目。

Mechanical Analysis and Controller Design of the Permanent Magnetic Variable Stiffness Flexible Joint

ZHANG Ming1, FANG Lijin2, SUN Feng3, OKA Koichi4   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819;
    2. Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110169;
    3. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870;
    4. Department of Intelligent Mechanical System Engineering, Kochi University of Technology, Kochi 782-8502, Japan
  • Received:2018-03-28 Revised:2018-10-21 Online:2019-03-05 Published:2019-03-05

摘要: 提出一种采用永磁弹簧、绳索驱动、梯形布置的拮抗式变刚度柔性机器人关节,能够根据任务需要,实时调节关节刚度。所述永磁弹簧装置,在绳索提供力矩一定的情况下,增加了关节刚度变化范围,同时减小操作臂的质量与惯量。对提高柔性机器人关节的运动性能具有重要意义。对关节空间与绳索空间的映射关系进行推导并利用雅可比矩阵和模型间静力学关系,得到关节刚度模型,进而实现关节刚度与位置解耦。以轨迹控制为目标,设计了一种双闭环解耦控制器,并进行了试验验证。仿真分析与试验结果共同表明,该柔性关节在较宽刚度调整范围内,都具有较好的位置响应特性和轨迹跟踪能力。上述结构与控制方式同样也适用于多自由度并联柔性机器人关节。

关键词: 变刚度, 解耦控制, 绳索驱动, 永磁弹簧

Abstract: An antagonistic variable stiffness flexible robot joint with magnetic spring, wire-driven and trapezoidal arrangement is proposed, which can adjust the joint stiffness in real time according to the task requirements. The magnetic spring device increases the variable stiffness range of the joint, without increasing the wire tension, while reducing the weight and inertia of the operating arm. It is of great significance to improve the joint performance. The relationship between the joint space and wire space is promoted and Jacobi matrix and static relationship between the models are used to obtain the joint stiffness model, which realize the decoupling of stiffness and position. Based on trajectory control, a double closed-loop decoupling controller is designed, then do experimental verification. The simulation and experimental results show that the joint has good position response and trajectory tracking ability within a wide stiffness range. This configuration and control method is also suitable for multi-degree of freedom parallel joints.

Key words: decoupling control, permanent magnet spring, variable-stiffness, wire-driven

中图分类号: