机械工程学报 ›› 2022, Vol. 58 ›› Issue (21): 38-49.doi: 10.3901/JME.2022.21.038
雷静桃1,2, 张悦文1
收稿日期:
2021-11-03
修回日期:
2022-02-22
出版日期:
2022-11-05
发布日期:
2022-12-23
通讯作者:
雷静桃(通信作者),女,1970年出生,博士,教授,博士研究生导师。主要研究方向为仿生机器人、医疗机器人、机器人模块化技术。E-mail:jtlei2000@163.com
作者简介:
张悦文,女,1996年出生,硕士研究生。主要研究方向为仿生机器人技术。E-mail:17854252082@163.com
基金资助:
LEI Jingtao1,2, ZHANG Yuewen1
Received:
2021-11-03
Revised:
2022-02-22
Online:
2022-11-05
Published:
2022-12-23
摘要: 四足机器人的仿生机体,大多采用刚性或单自由度机体结构,限制了四足机器人的机动性和灵活性。基于四足生物躯体解剖结构及动态弯曲运动机理分析,设计一种气动肌纤维驱动的刚柔耦合仿生机体,可实现变刚度侧向弯曲。根据仿生机体的结构,分析仿生椎间盘、仿生韧带、仿生肌肉等主要组成要素的刚度,提出一种仿生机体的串并联式刚度模型,建立仿生机体的刚度与气动肌纤维输入气压间的关系,探究在不同驱动方式下仿生机体的局部、整体变刚度特性。设计仿生机体的变刚度测试实验平台,分别开展仿生机体的局部、整体动态弯曲试验,分析其主动变刚度特性。实验结果表明,通过改变气动肌纤维的布置及充气压力,能实现仿生机体的动态弯曲,具有类生物的局部或整体变刚度特性。创新研究的仿生机体及驱动方式,为提高四足机器人的机动性提供借鉴。
中图分类号:
雷静桃, 张悦文. 气动肌纤维驱动仿生机体类生物变刚度特性分析[J]. 机械工程学报, 2022, 58(21): 38-49.
LEI Jingtao, ZHANG Yuewen. Analysis on the Characteristics with Biological Variable Stiffness of the Bionic-body Driven by Pneumatic Muscle Fibers[J]. Journal of Mechanical Engineering, 2022, 58(21): 38-49.
[1] 王吉岱, 卢坤媛, 徐淑芬, 等. 四足步行机器人研究现状及展望[J]. 制造业自动化, 2009, 31(2):4-6. WANG Jidai, LU Kunyuan, XU Shufen, et al. Research situation and prospect on quadruped walking robot[J]. Manufacturing Automation, 2009, 31(2):4-6. [2] LEESER K F. Locomotion experiments on a planar quadruped robot with articulated spinee[D]. Cambridge:MassachusetsInstitute of Technology, 1996. [3] KAWASAKI R, SATO R, KAZAMA E, et al. Development of a flexible coupled spine mechanism for a small quadruped robot[C]//IEEE International Conference on Robotics and Biomimetics. Qingdao, China. 2016:71-76. [4] 董立涛. 含脊柱关节四足机器人仿生结构设计及跳跃运动仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2014. DONG Litao. Bionic structural design and bounding motion simulation of quadruped robot with a spinal joint[D]. Harbin:Harbin Engineering University, 2014. [5] 李冬冬. 柔顺四足机器人的设计与控制研究[D]. 北京:北京交通大学, 2012. LI Dongdong. Study on design and control of a compliant quadruped robot[D]. Beijing:Beijing Jiaotong University, 2012. [6] KUEHN D, BERNHARD F, GRIMMINNER F, et al. Development of passive spine and actuated rear foot for an ape-like robot[C]//International Conference on Climbing and Walking Robots and the Support technologies for Mobile Machines. London:Springer Press, 2010:237-244. [7] SEOK S, WANG A, MENG Y C, et al. Design principles for highly efficient quadrupeds and implementation on the MIT cheetah robot[C]//IEEE International Conference on Robotics and Automation. Karlsruhe, Germany. 2013:3307-3312. [8] 张秀丽, 梁艳. 一种仿婴儿欠自由度四足爬行机器人[J]. 机器人, 2016, 38(4):458-466. ZHANG Xiuli, LIANG Yan. A baby-mimic insufficient-DOF quadruped crawling robot[J]. Robot, 2016, 38(4):458-466. [9] LEI Jingtao, YU Huangying, WANG Tianmiao. Dynamic bending of bionic flexible body driven by PAMs for spinning gait of quadruped robot[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1):11-20. [10] KIM Y J, CHENG S, KIM S, et al. A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery[J]. IEEE Transactions on Robotics, 2014, 30(2):382-395. [11] CHU Z, ZHANG D, LIAN X, et al. Multi-objective optimization of stiffness and workspace for a parallel kinematic machine[J]. International Journal of Mechanics & Materials in Design, 2013, 9(3):281-293. [12] HOGAN N. Adaptive control of mechanical impedance by coactivation of antagonist muscles[J]. IEEE Transactions on Automatic Control, 1984, 29(8):681-690. [13] WOLF S, HIRZINGER G. A new variable stiffness design:Matching requirements of the next robot generation[C]//IEEE International Conference on Robotics and Automation. Pasadena, CA, USA. 2008:1741-1746. [14] TSAGARAKIS N G, SARDELLITTI I, CALDWELL D G. A newvariable stifiness actuator (Compacta-VSA) design and modelling[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, USA. 2011, 378-383. [15] TAO Y, WANG T, WANG Y, et al. Design and modeling of a new variable stiffness robot joint[C]//IEEE International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014, 1-5. [16] 闫继宏, 石培沛, 张新彬, 等. 软体机械臂仿生机理、驱动及建模控制研究发展综述[J]. 机械工程学报, 2018, 54(15):1-14. YAN Jihong, SHI Peipei, ZHANG Xinbin, et al. Review of biomimetic mechanism, actuation, modeling and control in soft manipulators[J]. Journal of Mechanical Engineering, 2018, 54(15):1-14. [17] MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al. Field trials and testing of the OctArm continuum manipulator[C]//IEEE International Conference on Robotics and Automation, Orlando, Florida. 2006:2336-2341. [18] MD G, CHITRAKARAN V, DIENNO D, et al. Design and experimental testing of the OctArm soft robot manipulator[C]//Conference on Unmanned Systems Technology VIII. Kissimmee, FL:Unmanned Systems Technology VIII, 2006:1-10. [19] NEPPALLI S, JONES B, MCMAHAN W, et al. OctArm -A soft robotic manipulator[C]//IEEE International Conference on Intelligent Robots and Systems, 2007:2569. [20] MAHL T, HILDEBRANDT A, SAWODNY O. A variable curvature continuum kinematics for kinematic control of the bionic handling assistant[J]. IEEE Transactions on Robotics, 2014, 30(4):935-949. [21] CIANCHETTI M, CALISTI M, MAERGHERI L, et al. Bioinspired locomotion and grasping in water:The soft eight-arm OCTOPUS robot[J]. Bioinspiration & Biomimetics, 2015, 10:035003. [22] MAZZOLAI B, MARGHERI L, CIANCHETTI M, et al.Soft-robotic arm inspired by the octopus:II. From artificial requirements to innovative technological solutions[J]. Bioinspiration & Biomimetics, 2012, 7:025005. [23] 贾楠, 李鹏飞, 沈亚欣, 等. 侧弯动物模型的脊柱韧带结构及研究进展[J]. 实验动物科学, 2017, 34(6):69-73, 78. JIA Nan, LI Pengfei, SHEN Yaxin, et al. The research of spinal ligament in scoliosis animal model[J]. Laboratory Animal Science, 2017, 34(6):69-73, 78. [24] POLAK K, MARCIN, KRZYSZTOF, et al. Biomechanical characteristics of the porcine denticulate ligament in different vertebral levels of the cervical spine-Preliminary results of an experimental study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34:165-170. [25] KAMAL Z, ROUHI G. Significance of spine stability criteria on trunk muscle forces following unilateral muscle weakening:A comparison between kinematics-driven and stability-based kinematics-driven musculoskeletal models[J]. Medical Engineering & Physics, 2019, 73:51-63. [26] 韦以宗, 谢冰, 谭树生, 等. 腰大肌作用力与脊柱伸展应力关系的生物力学实验研究[J]. 中国临床解剖学杂志, 2008, 26(5):543-546. WEI Yizong, XIE Bing, TAN Shusheng, et al. The tension effects of psoas muscle on the extended stress of the spine:Biomechanical research[J]. Chinese Journal of Clinical Anatomy, 2008, 26(5):543-546. [27] ZWAMBAG D P, BROWN S. Experimental validation of a novel spine model demonstrates the large contribution of passive muscle to the flexion relaxation phenomenon[J]. Journal of Biomechanics, 2019, 102:109431. [28] 魏晓宁, 王艳, 裴飞. 腰椎间盘结构、盘内压力及不同载荷的影响:生物力学研究进展[J]. 中国组织工程研究, 2015, 19(20):3242-3247. WEI Xiaoning, WAN Yan, PEI Fei. A biomechanical progress of lumbar intervertebral disk in terms of structural features, internal pressure and different loads[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(20):3242-3247. [29] WEINMEISTER K, ECKERT P, WITTE H, et al. Cheetah-cub-S:Steering of a quadruped robot using trunk motion[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics. West Lafayette, IA. 2015:1-6. [30] LEI J, YU H. Study on the musculoskeletal body for quadruped robots with spinning gait[J]. High Technology Letters, 2015, 21(3):245-252. [31] CHALHOUB M S, KELLY J M. Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings[J]. International Journal of Solids and Structures, 1990, 26(7):743-760. [32] 张秀丽, 谭小康, 吴海波. 可变刚度的四足机器人被动柔顺脊柱设计与应用[J]. 北京交通大学学报, 2018, 42(6):111-118. ZHANG Xiu, TAN Xiaokang, WU Haibo. Design and application of passive compliant spine of quadruped robot with variable stiffness[J]. Journal of Beijing jiaotong university, 2018, 42(6):111-118 [33] 雷静桃, 张悦文, 戴臻豪, 等. 仿生气动肌纤维静态特性建模与实验研究[J]. 上海交通大学学报, 2021, 55(5):566-574. LEI Jingtao, ZHANG Yuewen, DAI Zhenhao, et al. Modeling and experimental study on static characteristics of bionic pneumatic muscle fiber[J]. Journal of Shanghai Jiaotong University, 2021, 55(5):566-574. |
[1] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[2] | 傅杨, 张跃, 毛颖, 唐小华, 陈祖高, 徐和武, 杨雨沛, 高斌, 田贵云. 基于Feature Boosting的管道电磁内检测多传感信号缺陷解析算法[J]. 机械工程学报, 2024, 60(20): 51-67. |
[3] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[4] | 张志勇, 王宇翔, 黄彩霞, 吴悠, 杜荣华. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报, 2024, 60(20): 240-250. |
[5] | 廖贵文, 张毅, 魏凯, 刘小君, 王伟. 受限润滑界面液固二相流场结构与颗粒运动行为耦合特性分析[J]. 机械工程学报, 2024, 60(20): 351-360. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 王德祥, 张宇, 江京亮, 刘新福, 刘国梁. 离子液基和棕榈油基纳米流体在镍基高温合金微量润滑磨削界面的摩擦学机理研究[J]. 机械工程学报, 2024, 60(19): 159-171. |
[8] | 李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186. |
[9] | 王晓宇, 魏兆成, 王学勤, 王栋. 整体叶轮双列开槽五轴插铣加工的残留材料建模[J]. 机械工程学报, 2024, 60(19): 310-317. |
[10] | 王高见, 刘丽, 康丹丹, 叶延洪, 邓德安. Ni含量对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2024, 60(18): 163-172. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[13] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[14] | 张禹泽, 赵竞夫, 赵振伟, 康荣杰, 戴建生, 宋智斌. 面向多关节训练的并联柔索驱动下肢康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 111-122. |
[15] | 梁旭, 张建勇, 李国涛, 苏婷婷, 何广平, 侯增广. 面向骨折复位手术的冗余并联机构:设计、建模与性能分析[J]. 机械工程学报, 2024, 60(17): 133-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||