• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (2): 115-125.doi: 10.3901/JME.2019.02.115

• 运载工程 • 上一篇    下一篇

动力电池外部短路故障热-力影响与分析

熊瑞, 马骕骁, 杨瑞鑫, 陈泽宇   

  1. 北京理工大学机械与车辆学院电动车辆国家工程实验室 北京 100081
  • 收稿日期:2018-09-29 修回日期:2018-11-26 出版日期:2019-01-20 发布日期:2019-01-20
  • 通讯作者: 熊瑞(通信作者),男,1985年出生,副教授,博士研究生导师。主要研究方向为电动汽车动力电池系统管理与综合控制。E-mail:rxiong@bit.edu.cn
  • 作者简介:马骕骁,男,1996年出生,硕士研究生。主要研究方向为动力电池系统安全管理。E-mail:masuxiao@qq.com;杨瑞鑫,男,1988年出生,博士研究生。主要研究方向为新能源汽车动力电池系统管理。E-mail:yangruixin@bit.edu.cn;陈泽宇,男,1982年出生,国内访问学者。主要研究方向为电动汽车电池安全与故障诊断技术。E-mail:chenzy@mail.neu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2018YFB0104100)

Thermo-mechanical Influence and Analysis of External Short Circuit Faults in Lithium-ion Battery

XIONG Rui, MA Suxiao, YANG Ruixin, CHEN Zeyu   

  1. National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081
  • Received:2018-09-29 Revised:2018-11-26 Online:2019-01-20 Published:2019-01-20

摘要: 动力电池安全性问题因电动汽车安全事故频发而备受关注,短路故障则被认为是大部分动力电池安全事故发生的主要原因。针对外部短路故障,以某圆柱形锂离子动力电池为研究对象,根据能量守恒定律,建立动力电池在外部短路情况下的三维热模型,获取动力电池单体的内外温度场分布,并在此基础上建立热-力模型,仿真分析动力电池内部热应力分布,计算结果表明:在25℃下动力电池两端内部活性材料与壳体的接触部位产生最大热应力,热应力随时间变化趋势与表面温度变化一致,且处于低段初始荷电状态(State of charge,SOC)动力电池的峰值热应力较高。该模型的应用可以为同类型动力电池节约测试成本、结构优化减少热应力以增加安全性提供一定的指导作用,并提高对外部短路的动力电池响应规律的认识。

关键词: 电动汽车, 锂离子电池, 热-力模型, 外部短路

Abstract: The safety of batteries has attracted much attention due to the frequent occurrence of electric vehicle safety accidents. The short circuit faults of batteries are considered to be the principal issues of most safety accidents. For the external short circuit faults, a cylindrical lithium-ion battery is taken as the research object, and according to the law of conservation of energy, a three-dimensional thermal model of the battery under the external short circuit condition is established. This model can be used to obtain the temperature distribution of the internal and external temperature of the battery. After that, a thermo-mechanical model is established. The heat stress distribution inside the battery is simulated and the results show that the maximum heat stress occurs in the contact part of the active material and the shell at both ends of the battery at 25℃, and its trend with time is consistent with the surface temperature, and the peak heat stress of the battery at the low-stage SOC(state of charge) is rather large. The application of this model can provide a guiding role for the same type of battery saving test cost, structural optimization and reduction of heat stress to increase safety, and improve the understanding of the response law of the battery after external short circuit.

Key words: Electric vehicles, External short circuit, Lithium-ion battery, Thermo-mechanical model

中图分类号: