机械工程学报 ›› 2018, Vol. 54 ›› Issue (5): 74-83.doi: 10.3901/JME.2018.05.074
牟德君1,2, 张一同1,2, 张兴3
收稿日期:
2016-12-14
修回日期:
2017-07-06
出版日期:
2018-03-05
发布日期:
2018-03-05
通讯作者:
张一同(通信作者),男,1945年出生,教授。主要研究方向为机构结构理论。E-mail:ytzhang@ysu.edu.cn
作者简介:
牟德君,女,1967年出生,副教授。主要研究方向为并联机器人机构学理论及应用。E-mail:djmu@ysu.edu.cn
基金资助:
MU Dejun1,2, ZHANG Yitong1,2, ZHANG Xing3
Received:
2016-12-14
Revised:
2017-07-06
Online:
2018-03-05
Published:
2018-03-05
摘要: 为了避免产生机构自由度和构件自由度两个基本概念的混淆,对它们的本质属性和区别进行了详细的讨论。用广义杆组和虚拟环路的概念,给出了单环路和多环路中任意选定构件的自由度计算方法。通过对平面单环7R机构、滚子从动件凸轮机构、不同自由度的Sarrus机构、2-3RC等典型机构的分析,按机构自由度和构件自由度的关系,把机构分成三类:第一类是机构自由度为1的机构,机构自由度等于所有构件自由度;第二类是机构自由度等于构件最大自由度的机构;第三类是机构自由度大于构件最大自由度的机构。分析结果表明,构件(包括输出构件)自由度是独立位移参数的数目,具有运动形式性质。而机构自由度是使机构所有构件都具有确定位置的全部独立参数的数目,仅仅是一个自然数,没有运动性质可言,机构的自由度与输出构件的选择无关。机构自由度是反映机构整体性能的一个属性,构件自由度反映的是机构局部中某个构件性能的一个属性,两者有着本质区别,在使用这两个概念时要严格区分,不能混为一谈。
中图分类号:
牟德君, 张一同, 张兴. 机构自由度和构件自由度的关系及本质区别[J]. 机械工程学报, 2018, 54(5): 74-83.
MU Dejun, ZHANG Yitong, ZHANG Xing. Relations between DOF of Mechanism and DOF of Links and Their Essential Differences[J]. Journal of Mechanical Engineering, 2018, 54(5): 74-83.
[1] RICO J M,AGUILERA L D,GALLARDO J. Computer implementation of an improved Kutzbach-Grübler mobility criterion[C]//ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference,September 29-October 2,2002,Montreal,Quebec,Canada. 2002:DETC 2002/DAC-34093. [2] RICO J M,RAVANI B. On mobility analysis of linkages using group theory[J]. Trans. ASME J. Mech. Des.,2003,125(1):70-80. [3] RICO J M,AGUILERA L D. GALLARDO J,et al. A more general mobility criterion for parallel manipulators[J]. ASME Journal of Mechanical Design,2006,128(1):207-219. [4] GOGU G. Mobility and spatiality of parallel robots revisited via theory of linear transformations[J]. European Journal of Mechanics-A/Solids,2005,24(4):690-711. [5] GOGU G. Bifurcation in constraint singularities and structural parameters of parallel mechanisms[J]. Meccanica,2011,46(1):65-74. [6] HUNT K H. Kinematic geometry of mechanisms[M]. Oxford:Clarendon Press,1978. [7] 黄真,刘婧芳,李艳文.论机构自由度[M].北京:科学出版社,2012. HUANG Zhen,LIU Jingfang,LI Yanwen. Mobility of mechanisms[M]. Beijing:Science Press,2012. [8] HUANG Z,LIU J F,ZENG D X. A general methodology for mobility analysis of mechanisms based on constraint screw theory[J]. Sci. China Tech. Sci.,2009,50(5):1337-1347. [9] LIU X J,WANG J S. Parallel kinematics:Types,kinematics and optimal design[M]. Berlin Heidelberg:Springer-Verlag,2014. [10] 戴建生. 机构学与机器人的几何与旋量代数[M]. 北京:高等教育出版社,2014. DAI Jiansheng. Geometrical foundations and screw algebra for mechanisms and robotics[M]. Beijing:Higher Education Press,2014. [11] YANG T L,SUN D J. A general formula of degree of freedom for parallel mechanisms[C]//ASME 32th Mechanisms and Robots Conference,August 3-6,2008,Brooklyn,New York,USA. 2008:DETC2008-49077. [12] 杨廷力,刘安心,罗玉峰,等:机器人机构结构综合方法的基本思想、特点及其发展趋势[J]. 机械工程学报,2010,46(9):1-11. YANG Tingli,LIU Anxin,LUO Yufeng,et al. Basic principle,main characteristics and development tendency of methods for robot mechanism structure synthesis[J]. Journal of Mechanical Engineering,2010,46(9):1-11. [13] YANG T L,SUN D J. A general degree of freedom formula for parallel mechanisms and multiloop spatial mechanisms[J]. Journal of Mechanisms and Robotics,2012,4:1-17. [14] 杨廷力,刘安心,罗玉峰,等.机器人机构拓扑结构设计[M]. 北京:科学出版社,2012. YANG Tingli,LIU Anxin,LUO Yufeng,et al. Theory and application of robot mechanism topology[M]. Beijing:Science Press,2012. [15] 沈惠平,尹洪波,李菊,等.基于方位特征方法的范例并联机构的拓扑特征分析及其启示与应用[J]. 机械工程学报,2015,51(13):101-115. SHEN Huiping,YIN Hongbo,LI Ju,et al. Position and orientation characteristic based method and enlightenment for topology characteristic analysis of typical parallel mechanisms and its application[J]. Journal of Mechanical Engineering,2015,51(13):101-115. [16] ZHANG Y T,MU D J. New concept and new theory of mobility calculation for multi-loop mechanisms[J]. Sci. China Tech. Sci.,2010,53:1598-1604. [17] ZHANG Y T,LI Y W,WANG L Y. A new formula of mechanism mobility based on virtual constraint loop[J]. Sci. China Tech. Sci.,2011,54:2768-2775. [18] ZHANG Y T,LU W J,MU D J,et al. Novel mobility formula for parallel mechanisms expressed with mobility of general link group[J]. Chinese Journal of Mechanical Engineering,2013,26(6):1082-1090. [19] IFToMM commission a standards terminology. Terminology for the theory of machines and mechanisms[J]. Mech. Mach. Theory,1991,26(5):435-539. [20] IFToMM permanent commission for standardization of terminology:Terminology for the mechanism and machine science[J]. Mech. Mach. Theory,2003,38:597-605. [21] 杨廷力,沈惠平,刘安心,等. 机构自由度公式的基本形式、自由度分析及其物理内涵[J]. 机械工程学报,2015,51(13):69-80. YANG Tingli,SHEN Huiping,LIU Anxin,et al. Review of the formulas for degrees of freedom in the past ten years[J]. Journal of Mechanical Engineering,2015,51(13):69-80. [22] 陈子明,张扬,黄坤,等. 一种无伴随运动的对称两转一移并联机构[J]. 机械工程学报,2016,52(3):9-17. CHEN Ziming,ZHANG Yang,HUANG Kun,et al. Symmetrical 2R1T parallel mechanism without parasitic motion[J]. Journal of Mechanical Engineering,2016,52(3):9-17. [23] 曾达幸,王华明,樊明洲,等.3自由度转动广义解耦并联机构构型综合[J]. 机械工程学报,2017,53(3):17-24. ZENG Daxing,WANG Huaming,FAN Mingzhou,et al. Type synthesis of three degrees of freedom rotational generalized decoupling parallel mechanism[J]. Journal of Mechanical Engineering,2017,53(3):17-24. [24] LU W J,ZENG D X,HUANG Z. Over-constraints and a unified mobility method for general spatial mechanisms. Part 2:Application of the principle[J]. Chinese Journal of Mechanical Engineering,2016,29(1):1-10. [25] XU Y D,ZHANG D S,WANG M,et al. Type synthesis of two-degrees-of-freedom rotational parallel mechanism with two continuous rotational axes[J]. Chinese Journal of Mechanical Engineering,2016,29(4):694-702. [26] KONG X,GOSSELIN C M. Mobility analysis of parallel mechanisms based on screw theory and the concept of equivalent serial kinematic chain[C]//2005 ASME Design Engineering Technical Conference & Computers and Information in Engineering Conference,Sept. 24-28,2005,Long Beach,California,USA. 2005:DETC2005-85337. [27] 李秦川,陈巧红,武传宇,等. 变自由度4-xPxRxRxRyRN并联机构[J]. 机械工程学报,2009,45(1):83-87. LI Qinchuan,CHEN Qiaohong,WU Chuanyu,et al. 4-xPxRxRxRyRN parallel mechanism with variable mobility[J]. Journal of Mechanical Engineering,2009,45(1):83-87. [28] BAGCI C. Degrees of freedom of motion in mechanisms[J]. Trans. ASME Ser. B,1971,93(1):140-148. |
[1] | 赵欣, 黄金杰. 基于RSM-RVEA的FDM增材制造工艺参数优化方法[J]. 机械工程学报, 2024, 60(19): 277-297. |
[2] | 于金须, 闫建华, 王孝冉, 张立杰, 谢平, 李永泉. 一种人机共融的手指外骨骼机器人设计与验证[J]. 机械工程学报, 2024, 60(17): 102-110. |
[3] | 牟德君, 陈先岭, 常雪龙, 胡波. (2-UPU+SPR)+(2-UPU+RPS)非对称混联机构末端约束及自由度分析[J]. 机械工程学报, 2024, 60(17): 272-282. |
[4] | 于金须, 闫建华, 肖俊明, 李永泉, 谢平, 张立杰. 基于医工结合的指关节运动学模型建立与验证[J]. 机械工程学报, 2024, 60(15): 149-159. |
[5] | 吴震, 李秦川, 叶伟. 基于固有频率的运动冗余并联机构位置逆解优选方法[J]. 机械工程学报, 2024, 60(13): 297-307. |
[6] | 徐文琳, 彭羽, 何智成, 姜潮. 复杂路径规划的机构分区运动学拓扑构型设计[J]. 机械工程学报, 2024, 60(11): 62-73. |
[7] | 刘伟, 刘宏昭. 非结式消元7R双环球面机构运动学位移分析[J]. 机械工程学报, 2024, 60(7): 45-53. |
[8] | 畅博彦, 韩芳孝, 周杨, 金国光. 面向精梳任务的高速变胞机构冲击动力学研究[J]. 机械工程学报, 2024, 60(7): 54-65. |
[9] | 张雷雷, 赵延治, 赵铁石. 并联机构瞬轴面研究进展[J]. 机械工程学报, 2023, 59(21): 131-146. |
[10] | 姚鹏飞, 吕胜男, 张武翔, 丁希仑. 基于正四棱台Bricard单元的双环可展开天线机构构型设计[J]. 机械工程学报, 2023, 59(21): 147-156. |
[11] | 陆晨浩, 陈耀, 何若琪, 范维莹, 冯健. 基于深度神经网络的四折痕锥形折纸结构设计[J]. 机械工程学报, 2023, 59(21): 167-176. |
[12] | 占金青, 晏家坤, 蒲圣鑫, 朱本亮, 刘敏. 基于等几何分析的电热驱动柔顺机构拓扑优化设计[J]. 机械工程学报, 2023, 59(21): 177-187. |
[13] | 刘辛军, 于靖军, 谢福贵, 赵慧婵, 孟齐志. 行为机构学与高端装备创新设计[J]. 机械工程学报, 2023, 59(19): 202-212. |
[14] | 李海虹, 董晋安, 郭山国, 刘志奇. 动/静平台非一致型并联机构构型分析及设计方法[J]. 机械工程学报, 2023, 59(17): 116-125. |
[15] | 杨逸波, 汪满新. R(RPS&RP)&2-UPS并联机构位置精度可靠性建模与分析[J]. 机械工程学报, 2023, 59(15): 62-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||