• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (23): 10-22.doi: 10.3901/JME.2018.23.010

• 机构学及机器人 • 上一篇    下一篇

扫码分享

准静态与动态载荷下斜齿轮齿面粘着磨损计算

周长江1,2, 雷玉英1, 汪红兵1, 韩旭1   

  1. 1. 湖南大学汽车车身先进设计制造国家重点实验室 长沙 410082;
    2. 中南大学高性能复杂制造国家重点实验室 长沙 410083
  • 收稿日期:2017-12-25 修回日期:2018-05-31 出版日期:2018-12-05 发布日期:2018-12-05
  • 通讯作者: 周长江(通信作者),男,1975年出生,博士,副教授,博士研究生导师。主要研究方向为传动机械学、机械摩擦学与动力学。E-mail:yangtsezhou@hnu.edu.cn
  • 作者简介:雷玉英,男,1990年出生,硕士研究生。主要研究方向为传动摩擦学。E-mail:leiyy@hnu.edu.cn;汪红兵,男,1992年出生,博士研究生。主要研究方向为传动摩擦学。E-mail:whb@hnu.edu.cn;韩旭,男,1968年出生,教授,博士研究生导师。主要研究方向为计算力学、机械设计及理论。E-mail:hanxu@hnu.edu.cn
  • 基金资助:
    国家自然科学基金(51675168)和湖南省重点研发计划(2016JC2001)资助项目。

Adhesive Wear Models for Helical Gears under Quasi-static and Dynamic Loads

ZHOU Changjiang1,2, LEI Yuying1, WANG Hongbing1, HAN Xu1   

  1. 1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082;
    2. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083
  • Received:2017-12-25 Revised:2018-05-31 Online:2018-12-05 Published:2018-12-05

摘要: 基于反向圆锥滚子等效接触模型和Archard磨损计算通式,提出了一种适用于标准斜齿轮齿面粘着磨损的计算方法。由时变接触线长百分比和弯-扭-轴耦合动力学模型确定齿面载荷,根据等效接触模型和Hertz接触理论计算齿面压力和滑移距离,求出准静态与动态载荷下的齿面磨损量。通过将主动轮磨损曲线与相关文献结果比较,验证了上述方法的正确性。几何与工作参数对磨损量的影响分析显示,齿根与齿顶处的磨损量较大,且齿根的磨损量大于齿顶,节圆处的磨损量趋近于零;齿轮前端面至后端面,主动轮磨损量逐渐减小而从动轮磨损量逐渐增大;宽齿轮的磨损量沿齿宽渐趋均布。参数分析表明:增大模数、传动比、齿宽或减小扭矩均可降低磨损量,增大螺旋角或改变转速对减小齿面磨损的作用不明显。上述研究对于提高齿轮表面质量与传动性能,对于减磨设计具有一定的参考价值。

关键词: 参数分析, 齿面磨损量, 斜齿轮传动, 粘着磨损, 准静态与动态载荷

Abstract: According to the equivalent contact model of tapered rollers in opposite orientation and Archard's wear formula, a new adhesive wear model for helical gears is proposed in this work. Face loads are firstly determined by the time-varying contact ratio and bending-torsion-shaft coupling dynamic model of the helical gear drive, and then the tooth pressure and the sliding distance are evaluated based on the equivalent contact model and Hertz's theory. Thereafter, the wear depth is computed under quasi-static and dynamic loads. The presented method is verified by the comparative wear depth curves from this work and the published papers, and effects of the major geometrical and working parameters on the wear depth are investigated. The results show that larger wear depths are generated at the root and the tip, while the wear depth at the root is larger than the one at the tip, and that it trends to zero at the pitch line. From front transverse plane to rear one of the driving pinion or driven gear, the wear depth of the pinion becomes smaller whereas that of the gear turns larger. However, the wear depth of wide-faced helical gears trends to a uniform along face width. Additionally, the parameters analysis show that the wear depth decreases as modules, transmission ratios, face widths or input torques are increased, while helical angle or rotational speed variation has little influence on wear depth reduction. It is also indicated that accurate determination of the wear depth and rational match of the geometry and working parameters are valid in gear surface quality and transmission performance enhancement, and to wear resistance in engineering design.

Key words: adhesive wear, helical gear drive, parameters analysis, quasi-static and dynamic loads, wear depth

中图分类号: