• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (1): 49-60.doi: 10.3901/JME.2021.01.049

• 机器人及机构学 • 上一篇    下一篇

扫码分享

齿轮副高速搅油阻力矩理论计算与试验研究

郭栋1, 陈芳超1, 刘骄2, 石晓辉1, 罗冬源1   

  1. 1. 重庆理工大学汽车零部件先进制造技术教育部重点实验室 重庆 400054;
    2. 重庆金康动力新能源有限公司 重庆 401135
  • 收稿日期:2019-12-30 修回日期:2020-06-04 出版日期:2021-01-05 发布日期:2021-02-06
  • 通讯作者: 郭栋(通信作者),男,1983年出生,博士,副教授,硕士研究生导师。主要研究方向为汽车传动系统NVH技术,新型高性能传动技术。E-mail:guodong@cqut.edu.cn
  • 作者简介:陈芳超,男,1995年出生,硕士研究生。主要研究方向为电动汽车高速齿轮传动系统技术。E-mail:chenfangchao@2018.cqut.edu.cn
  • 基金资助:
    国家自然科学基金(51975080)和重庆市教委科学技术研究(KJQN201901121)资助项目。

Theoretical and Experimental Study of Oil Churning Resistance Torque of High-speed Gear Pair

GUO Dong1, CHEN Fangchao1, LIU Jiao2, SHI Xiaohui1, LUO Dongyuan1   

  1. 1. Key Laboratory of Advance Manufacturing Technology for Automobile Part. Ministry of Education, Chongqing University of Technology, Chongqing 400054;
    2. Chongqing Jinkang Power New Energy Co., Ltd, Chongqing 401135
  • Received:2019-12-30 Revised:2020-06-04 Online:2021-01-05 Published:2021-02-06

摘要: 效率是新能源汽车传动系统的重要研究内容之一,准确的齿轮副搅油阻力矩模型是提高传动系统效率水平的一大助力。不考虑风阻的影响,提出直齿轮副高速搅油阻力矩理论计算模型。依据高速齿轮运转时与润滑油的接触情况,把齿轮搅油阻力矩分为齿轮端面摩擦阻力矩、周面摩擦阻力矩与啮合区域挤压阻力矩三部分。运用流体动力学理论与摩擦学原理推导出单个齿轮的端面摩擦阻力矩与周面摩擦阻力矩;运用流体连续性方程、动量守恒以及伯努利原理推导出齿轮啮合区域挤压润滑油的挤压阻力矩,进而得到整个齿轮副搅油阻力矩的理论计算模型。搭建试验台架,通过多种工况参数试验验证了计算模型的可行性,理论计算结果与试验结果具有较好的一致性。在此基础上,完成了各参数对搅油阻力矩的影响规律分析。结果表明:转速、齿宽和浸油深度均会对搅油阻力矩产生影响,其中齿轮副啮合区域的挤压阻力矩占比最大;转速对搅油阻力矩的各个组成部分均会产生较大的影响;齿宽不影响端面摩擦阻力矩,但对挤压和周面摩擦阻力矩影响很大;浸油深度对挤压和端面摩擦阻力矩的影响更显著。

关键词: 搅油阻力矩, 端面摩擦, 周面摩擦, 挤压阻力, 参数分析

Abstract: Efficiency is one of the important research contents of the transmission system of new energy vehicles. An accurate drag torque model of the gear pair is crucial to improve the efficiency level of the transmission system. A model for calculating the high-speed oil churning resistance torque of the spur gear pair is proposed, without considering the influence of the windage. According to the contact condition between the high-speed gear and the lubricating oil during the operation, the gear resistance torque is divided into three parts: the frictional resistance torque on the end face of the gear, the frictional resistance torque on the peripheral surface, and the squeeze resistance torque on the meshing area. Using the fluid dynamic theory and tribological principles to derive the oil resistance torque of a single gear, the fluid continuity equation, momentum conservation, and Bernoulli's principle are used to derive the squeeze resistance torque of the gear meshing area to squeeze the lubricant. Theoretical calculation model of oil resistance torque of the whole gear pair was established. The experimental bench was built and the feasibility of the calculation model is verified by experiments with various operating parameters. The theoretical calculation results are in good agreement with the experimental results. On this basis, the influence of each parameter on the churning torque is completed. The results show that the rotation speed, tooth width, and oil immersion depth all have an influence on the oil churning resistance torque, of which the squeeze resistance torque of the gear pair meshing area has the largest proportion; the speed will produce a large amount of each component of the oil resistance torque. The tooth width does not affect the frictional resistance moment of the end face, but has a great influence on the frictional resistance moment of the squeeze and the peripheral surface; the influence of the depth of oil immersion on the resistance torque of the squeeze and the end surface frictional is more significant.

Key words: oil churning torque, end surface friction, peripheral surface friction, squeeze resistance, parameters analysis

中图分类号: