[1] LITVIN F L,CHAING W S,KUAN C,et al. Generation and geometry of hypoid gear member with face-hobbed teeth of uniform depth[J]. International Journal of Machine Tools and Manufacture,1991,31(2):167-181.
[2] FAN Qi. Computerized modeling and simulation of spiral bevel and hypoid gears manufactured by gleason face hobbing process[J]. ASME Journal of Mechanical Design,2006,128(11):1315-1327.
[3] FAN Qi. Kinematical simulation of face hobbing indexing and tooth surface generation of spiral bevel and hypoid gears[J]. Gear Technology,2006(1):30-38.
[4] SHIH Yipei,FONG Zhanghua. Mathematical model for a universal face hobbing hypoid gear generator[J]. ASME Journal of Mechanical Design,2007,129(1):38-47.
[5] SHIH Yipei,FONG Zhanghua. Flank modification methodology for face-hobbing hypoid gears based on ease-off topography[J]. ASME Journal of Mechanical Design,2007,129:1294-1302.
[6] VIMERCATI M. Mathematical model for tooth surfaces representation of face-hobbed hypoid gears and its application to contact analysis and stress calculation[J]. Mechanism and Machine Theory,2007,42:668-690.
[7] LITVIN F L. Gear geometry and applied theory[M]. 2nd ed. New York:Cambridge University Press,2004.
[8] LITVIN F L,FUENTES A,FAN Qi,et al. Computerized design,simulation of meshing,and contact and stress analysis of face-milled formate generated spiral bevel gears[J]. Journal of Mechanical Design,2002(37):441-459.
[9] FUENTES A,LITVIN F L,MULLINS B R. Design and stress analysis of low-noise adjusted bearing contact spiral bevel gears[J]. Journal of Mechanical Design,2002,124(9):523-532.
[10] SHIH Yipei. A novel ease-off flank modification methodology for spiral bevel and hypoid gears[J]. Mechanism and Machine Theory,2010(45):1108-1124.
[11] ARTONI A,GABICCINI M,KOLIVAND M. Ease-off based compensation of tooth surface deviations for spiral bevel and hypoid gears:Only the pinion needs corrections[J]. Mechanism and Machine Theory,2013(61):84-101.
[12] CAO Xuemei,FANG Zongde,XU Hao,et al. Design of pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors[J]. Chinese Journal of Aeronautics,2008(21):179-186.
[13] SHTIPELMAN B A. Design and manufacture of hypoid gears[M]. New York:John Wiley & Sons Inc.,1978.
[14] 董学朱. 延伸外摆线齿准双曲面齿轮几何设计和切齿调整计算新方法[J]. 机械传动,1999,23(4):16-19. DONG Xuezhu. The geometry design and machine setting calculation new method of epicycloids hypoid gear[J]. Journal of Mechanical Transmission,1999,23(4):16-19.
[15] 董学朱. 摆线齿锥齿轮及准双曲面齿轮设计与制造[M]. 北京:机械工业出版社,2002. DONG Xuezhu. Design and manufacture of epicycloids bevel gear and hypoid gear[M]. Beijing:China Machine Press,2002.
[16] 宣佳敏,魏文军,刘平义,等. 预置接触区长度系数的Spirac切齿调整计算方法[J]. 航空动力学报,2015,30(1):209-218. XUAN Jiamin,WEI Wenjun,LIU Pingyi,et al. Spirac machine-tool setting calculation method by predetermined contact pattern length factor[J]. Chinese Journal of Aeronautics,2015,30(1):209-218.
[17] ZHANG Weiqing,CHENG Bingkui,GUO Xiaodong,et al. Motion control method for face hobbing on CNC hypoid generator[J]. Mechanism & Machine Theory,2015(92):127-143.
[18] 张宇,严宏志,曾韬. 弧齿锥齿轮双重螺旋法切齿原理及齿面接触分析研究[J]. 机械工程学报,2015,51(21):15-23. ZHANG Yu,YAN Hongzhi,ZENG Tao. Cutting principle and tooth contact analysis of spiral bevel and hypoid gears generated by duplex helical method[J]. Journal of Mechanical Engineering,2015,51(21):15-23.
[19] 吴训成,毛世民,吴序堂. 点啮合齿面主动设计研究[J].机械工程学报,2000,36(4):70-73. WU Xuncheng,MAO Shimin,WU Xutang. Study on the function oriented design of point-contact tooth surface[J]. Chinese Journal of Mechanical Engineering,2000,36(4):70-73. |