[1] HUSTY M L,KARGER A. Self-motions of Griffis-Duffy type parallel manipulators[C]//IEEE International Conference on Robotics and Automation,April 24-28,2000,San Francisco. Piscataway:IEEE,2000:7-12.
[2] KARGER A. Singularities and self-motions of equiform platforms[J]. Mechanism and Machine Theory,2001,36(7):801-815.
[3] NAWRATIL G. Self-motions of TSSM manipulators with two parallel rotary axes[J]. ASME Journal of Mechanisms and Robotics,2011,3(3):031007.
[4] MERLET J P. Singular configurations of parallel mani-pulators and Grassmann geometry[J]. The International Journal of Robotics Research,1989,8(5):45-56.
[5] BEN-HORIN P,SHOHAM M. Application of Grass-mann-Cayley algebra to geometrical interpretation of parallel robot singularities[J]. The International Journal of Robotics Research,2009,28(1):127-141.
[6] LI Qinchuan,XIANG Ji'nan,CHAI Xinxue,et al. Singularity analysis of a 3-RPS parallel manipulator using geometric algebra[J]. Chinese Journal of Mechanical Engi-neering,2015,28(6):1204-1212.
[7] HUANG Z,LI Q. General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators[J]. The International Journal of Robotics Research,2002,21(2):131-145.
[8] FANG Hairong,FANG Yuefa,GUO Sheng. Structure synthesis of 4-DOF parallel robot mechanisms based on screw theory[J]. Chinese Journal of Mechanical Engineering,2004,17(4):486-489.
[9] HERVE J M. The Lie group of rigid body displacements,a fundamental tool for mechanism design[J]. Mechanism and Machine Theory,1999,34(5):719-730.
[10] 李秦川,黄真. 基于位移子群分析的3自由度移动并联机构型综合[J]. 机械工程学报,2003,39(6):18-21. LI Qinchuan,HUANG Zhen. Type synthesis for 3-DOF translational parallel mechanisms based on displacement subgroup[J]. Journal of Mechanical Engineering,2003,39(6):18-21.
[11] YANG T,LIU A,JIN Q,et al. Position and orientation characteristic equation for topological design of robot mechanisms[J]. ASME Journal of Mechanical Design,2009,131(2):021001.
[12] 杨廷力,刘安心,沈惠平,等. 基于方位特征方程的3T-1R并联机构的拓扑结构综合[J]. 机械工程学报,2017,53(21):54-64. YANG Tingli,LIU Anxin,SHEN Huiping,et al. Topological structural synthesis of 3T-1R parallel mechanism based on POC equations[J]. Journal of Mechanical Engineering,2017,53(21):54-64.
[13] NORTON R L. Design of machinery:An introduction to the synthesis and analysis of mechanisms and machines[M]. Boston:WCB McGraw-Hill,1999.
[14] 褚金奎,王立鼎,吴琛. 四杆机构轨迹特性与机构尺寸型关系研究[J]. 中国科学,E辑,2004,34(7):753-762. CHU Jinkui,WANG Liding,WU Chen. Relationship between properties of coupler curve and link's dimensions in 4-bar mechanisms[J]. Science in China Ser. E,2004,34(7):753-762.
[15] SIMIONESCU P A,SMITH M R. Four-and six-bar function cognates and overconstrained mechanisms[J]. Mechanism and Machine Theory,2001,36(8):913-924.
[16] PENNOCK G R,RAJE N N. Coupler cognates for the double flier eight-bar linkage[J]. ASME Journal of Mechanical Design,2005,127(6):1145-1151.
[17] GRIFFIS M W,DUFFY J. Method and apparatus for controlling geometrically simple parallel mechanisms with distinctive connections:U.S. Patent,5,179,525[P]. 1993-1-12.
[18] 李洪波. 共形几何代数——几何代数的新理论和计算框架[J]. 计算机辅助设计与图形学学报,2005,17(11):2383-2393. LI Hongbo. Conformal geometric algebra-A new framework for computational geometry[J]. Journal of Com-puter-Aided Design & Computer Graphics,2005,17(11):2383-2393.
[19] 李洪波. 共形几何代数与运动和形状的刻画[J]. 计算机辅助设计与图形学学报,2006,18(7):896-901. LI Hongbo. Conformal geometric algebra for motion and shape description[J]. Journal of Computer-Aided Design & Computer Graphics,2006,18(7):896-901.
[20] HILDENBRAND D,SIMOS T E,PSIHOYIOS G,et al. Foundations of geometric algebra computing[M]. Berlin:Springer,2013. |